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1 Overview 
1.1 Case Study Goal 
This case study focuses on the engineering challenges relating to RAM and ROM/flash memory 
usage in embedded devices – specifically, the changes typically required when re-implementing 
desktop-targeted open source projects in an embedded device.  The specific components being 
studied include the Linux operating system and the GStreamer streaming media framework. 

1.2 Hardware 
The embedded device hardware platform used for this technology case study is the TI OMAP 
1510 P1 evaluation module (EVM).  The features of the P1 EVM include: 

• ARM9 general purpose processor 
• C55 digital signal processor 
• Audio output via an I2S audio codec with power amplifier and speaker connection 
• LCD display with touch screen 
• 10T networking 

There are many other features on the P1 EVM, however they are outside the scope of this cas e 
study. 

In addition to the P1 EVM, a network connected development workstation running Redhat 7.1 / 
Linux 2.4.2 is also used for cross development. 

1.3 Software 
The software for the P1 EVM is shown in the software diagram in figure 1. 
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Figure 1: High-level software diagram 

The subcomponents in the Linux kernel are shown in figure 2. 
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Figure 2: Kernel subcomponents 
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In addition to the software running on the P1 EVM, we also utilize a collection of software 
development compilers, assemblers, linkers, and other development utilities (referred to as a 
tool chain).  Details about each software component are provided below in the Software 
Reference section. 
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2 Software Reference 
The software used for this case study came from many sources.  Table 1 lists each component, 
its version and its source. 

Software 
Component 

Version License Source 

Display Driver 0.9 Proprietary RidgeRun 
Touch Pad 
Driver 

0.9 Proprietary RidgeRun 

Net Driver 2.4.0 
test #12 

GPL Part of Linux kernel 

TaskBridge 0.9 Proprietary RidgeRun  
Linux Kernel 2.4.0 

test #12 
GPL and 
LGPL 

http://www.kernel.org/pub/linux/kernel/v2.4/linux-
2.4.0.tar.gz 

Microwindows 0.89pre7 MPL or 
GPL 

http://www.microwindows.org/ 

FLNX 0.16 GPL ftp://microwindows.censoft.com/pub/microwindows/flnx/ 
GStreamer 0.2.1+ LGPL http://www.gstreamer.net/ 
glibc 2.1.3 LGPL ftp://ftp.gnu.org/gnu/glibc/glibc-2.1.3.tar.gz 
ViewML 
Browser 

CVS 
9/25/01 

GPL http://www.viewml.com/ 

Media Player 0.2.1+  Part of GStreamer 
BusyBox 0.60.1 GPL ftp://oss.lineo.com/busybox/ 
RR Load 0.9 Proprietary  
ARM9 Audio 
Driver 

0.9 GPL http://cvs.sourceforge.net/cgi-
bin/viewcvs.cgi/armlinux/linux/drivers/sound/ (sa1100-
audio.c, sa1100-audio.h, and sa1100- uda1341.c) 
modified to work on OMAP 1510 P1 EVM 

TaskBridge 0.9 Proprietary RidgeRun 
C55 DSP MP3 
Decoder 

0.9 Proprietary Imagine Technology, LLC 
http://www.imaginetechnology.net/ 

mad ARM9 
MP3 Decode 

0.13 GPL http://sourceforge.net/projects/mad/ 

mpg123 
ARM9 MP3 
Decoder 

0.59r mpg123 
custom 

http://www.mpg123.de/ 

Table 1: Software component sources 
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In addition to the main software components listed above, various libraries are also used, as 
listed in Table 2. 

Software 
Component 

Version License Source 

imlib 1.9.10 GPL For ViewML and Microwindows 
http://freshmeat.net/projects/imlib/ 

libwww 5.2.8 W3C®  software 
notice and license 

For ViewML 
http://www.w3.org/Library/User/History.html 

jpeg 6b libjpg custom For Microwindows 
http://www.ijg.org/files/ 
This software is based in part on the work of the Independent 
JPEG Group  

zlib 1.1.3 zlib custom For Microwindows and libpng 
http://www.gzip.org/zlib/ 
Copyright (C) 1995-1998 Jean-loup Gailly and Mark Adler 

libpng 1.2.0 libpng custom For Microwindows 
http://www.libpng.org/pub/png/libpng.html 

glib 
gobject 
gmodule 
gthread 

1.3.10 LGPL For GStreamer 
ftp://ftp.gtk.org/pub/gtk/v1.3/ 

Table 2: Soft ware library sources 

Various tools were used as part of this case study, as listed in Table 3: 

Package Tools Version Source 

gcc gcc 2.95.2 http://www.gnu.or g/software/gcc/gcc-
2.95/gcc-2.95.2.html 

gcc arm 
patches 

 10/22/99 ftp://ftp.netwinder.org/users/u/urnaik/gcc-
2.95.2-diff-991022.gz 

binutils addr2line, ar, c++filt, 
demangle, gas, gprof, 
ld, nlmconv, nm, 
objcopy, objdump, 
ranlib, readelf, size, 
strings, strip, and 
windres. 

2.10 ftp://ftp.gnu.org/gnu/binutils/binutils-
2.10.tar.gz 

Library 
optimizer 

libraryopt 1.0.1 http://sourceforge.net/projects/libraryopt/ 

Table 3: Tool sources 
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3 Software Overview 
For this case study, the focus centered around memory issues of Linux solutions in embedded 
devices.  The two main areas of investigation were porting the GStreamer open source 
multimedia desktop software technology into the embedded space, along with improvements to 
Linux kernel memory usage. 

3.1 Linux 
The Linux kernel was designed from its inception in high level language such that it could run 
on different families of microprocessors provided that they were supported by a common cross-
development environment, including compiler, assembler, linker, and debugger.  Linux works 
in embedded devices if a Linux port to the embedded processor used in the target device exists.  
Linux device drivers for embedded device I/O interfaces and peripherals must be ported or 
written.  Tools to download code to the target device are required.  Most of the necessary 
software pieces are available on the Internet, but pulling together the entire package is time 
consuming – taking an estimated 3 to 6 engineering months to integrate into an effective 
development environment.  Finding a supported Linux distribution for the target embedded 
processor is more efficient.  For this case study, the RidgeRun OMAP 1510 DSPLinux BSP, 
version 1.0 was used, with some of the measurements made using a pre-release version of the 
BSP. 

3.2 Microwindows + FLNX 
The Linux kernel does not include a graphical user interface (GUI).  Instead, a separate library 
is used.  For this case study Microwindows is used for the GUI and FLNX provides the widget 
set. 

Microwindows is an open source project aimed at bringing the features of modern graphical 
windowing environments to smaller devices and platforms .  Microwindows applications can be 
built and tested on a Linux development workstation, as well as cross-compiled for the target 
device.  Microwindows consists of the Win32/WinCE API and the Xlib- like API 
implementation known as Nano-X.  Microwindows uses the Linux frame buffer to display 
output and the touch pad driver to receive user input. 

On top of Microwindows is FLNX, a version of the FLTK (fast light tool kit) application 
development environment modified to target Nano -X rather than X.  FLNX provides widget set 
support; including buttons, dialog boxes, text boxes, and widgets for the input of numeric 
values.  The case study did not attempt  

3.3 ViewML 
The ViewML browser is an open source project aimed at producing a small-memory footprint, 
high-quality web browser for the embedded Linux market.  The ViewML browser is based on 
KDE's kfm (kde file manager), and FLTK.  The kfm HTML widget has extensive support of 
HTML v3.2.  The kfm HTML widget displays most of today's web site contents without error.  
Kfm is written in C++, and originally required the Qt widget set for various user interface 
controls.  The standard Qt widget set, however, is too large for most embedded requirements, so 
ViewML uses a translation layer that allows the kfm HTML widget to use FLTK.  ViewML 
supports a customizable user interface.  The display engine also uses FLTK for forms support. 
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3.4 glibc 
The glibc library supports the standard C language APIs.  Some functions are handled 
completely within the library, such as the string functions strcp(), strcmp(), etc.  Other 
functions invoke the Linux kernel, such as file system functions open(), read(), write(), and 
close().  In the x86 desktop PC environment, the size of the current version of glibc library is 
about the same size as the size of the current version of the Linux kernel itself.  Detailed code 
size information is provided latter in the case study. 

3.5 GStreamer 
GStreamer is a framework for creating streaming media applications.  GStreamer's development 
framework makes it possible to write any streaming multimedia application.  The framework 
includes several components to build a full featured media player capable of playing common 
media encodings including MPEG1, MPEG2, AVI, MP3, WAV, and AU.  GStreamer, 
however, is much more than just another media player.  Pluggable components also make it 
possible to write a full- fledged video or audio editing application.  For embedded devices, 
pluggable components can be developed for special effects, like reverberation or parametric 
equalization.  

GStreamer allows the construction of graphs of media- handling components, ranging from 
simple MP3 playback to complex audio (mixing) and video (non- linear editing) processing.  
Applications can take advantage of advances in codec and filter technology trans parently.  
Developers can add new codecs and filters by writing a simple plugin with a clean, generic 
interface. GStreamer is released under the LGPL, with many of the included plugins retaining 
the license of the code from which they were derived, usually GPL or BSD. 

The framework is based on plug- ins that provide codec and other functionality.  The plug- ins 
can be connected and arranged in a pipeline.  This pipeline defines the data flow.  Applications 
sit on top of the GStreamer framework to use the supplied multimedia functionality without 
having to know about the details.  For example, an application written with a GStreamer 
framework containing an MP3 codec will automatically be usable for playing AAC streamers 
once an AAC codec plug- in is installed. 

For the desktop PC, the plug-ins are executed by the PC processor, usually an x86 
microprocessor.  For the case study, the GStreamer framework was modified to allow plug-in 
execution by the DSP. 

More information about GStreamer can be found at http://www.gstreamer.net/. 

3.6 rrload 
The rrload boot loader was developed by RidgeRun Inc, and is shipped as a component within 
the DSPLinux SDK distribution.  It is tailored specifically to manage the loading, storing, and 
invoking of a Linux kernel and root file system.  In normal operation, the boot loader resides in 
flash (at the reset vector) and is the first program run on power up, and unless intercepted, 
rrload will typically transfer control to the stored system (e.g. ker nel + file system).  
Additionally, the boot loader will relocate either the kernel and/or the file system to SDRAM if 
necessary prior to transferring control.  This behavior happens automatically, responding to a 
previously configured rrload with a default boot command of "boot_auto".  This is the typical 
command stored along with the user's other persistent boot loader settings, which among other 
items, can include extra kernel command line arguments. 
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The rrload tool can also transfer control to a Linux kernel compiled for execute- in-place (XIP) 
operation.  Execute- in-place has the advantage of reducing the RAM needed (but typically 
requiring more ROM/flash since the executables can not be stored compressed).  Execute- in-
place is typically not used if XIP is significantly slower than executing in RAM due to the 
difference in memory access speeds for flash compared to RAM.  For this case study, XIP was 
not used. 

If the boot loader is not configured with a default boot command, or if the boot process is 
intercepted, rrload will simply present its user interface and wait for user input.  The boot loader 
offers both a menu UI, as well as a command line UI that the user may easily toggle between.  
The ability to download a new kernel and/or file system to either RAM or flash is available via 
the UI. The boot loader supports two download formats.  The first format is Motorola srec 
format.  The second format is called rrbin and consists of a three line tag appended to the front 
of a binary image.  The tag consists of the load address, the start address, and the binary image 
length.  The rrload boot loader can accept these download formats over a variety of board I/O 
ports such as serial, parallel and Ethernet.  The user interface communicates over the board's 
serial line with a host terminal session such as minicom, HyperTerminal, etc.  Holding the 
[Enter] key down within the host terminal session while simultaneously applying power to the 
board will insure that any previously stored default boot command is temporarily intercepted, 
forcing the boot loader to present its user interface. 
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4 Porting GStreamer 
Like most open source projects, GStreamer is focused on functionality over minimizing 
footprint or maximize performance.  It was originally targeted for x86 desktop PCs with 
features appropriate for desktop usage.  Modifying GStreamer to function in the target 
embedded device follows a series of steps likely to form a pattern used by other open source 
projects transitioning to the embedded space.  Those steps, and the cha llenges are described 
below. 

A functional description of GStreamer can be found in Appendix B - GStreamer Documentation 
on page 54. 

4.1 Cross Compiling 
Cross-compiling is the process of building software for a target processor architecture on a 
development workstation that is based upon a different host processor architecture.  The 
software for the ARM target device is cross-compiled using an x86-based development 
workstation.  The GNU tools enable cross compiling – however, adapting for embedded 
specific requirements is necessary.  

The collection of compilers, assemblers, linkers, and other development utilities is referred to as 
a tool chain.  The tool chain used for cross development is typically installed on the 
development workstation in an auxiliary location such as /opt/arm-linux, to avoid interactions 
with the native tool chain on the development workstation.  Conventionally, the environment 
variable $prefix holds the directory of the tool chain to use.  When cross developing, $prefix is 
set to /opt/arm- linux.  The glibc C library is installed in the $prefix directory in order to build 
programs that use the C library available on the target device.  In order to find glibc, the tool 
chain has include and library search paths hard coded into the various tools, requiring that we 
install the libraries into $prefix/lib directory.  One of the most common mistakes in cross 
development is to build and test the program on the development workstation and then attempt 
to cross compile for the target device.  In the cross-development linking stage, all the library 
routines available on the development workstation, but not available on the target device, turn 
up as unresolved externals.  It often takes a significant amount of rework to get the program 
working without depending on libraries only available on the development workstation.  

On the target device, the C libraries are installed in their 'usual' location, /lib, allowing 
applications to locate them during the normal boot sequence and.  Other libraries are normally 
installed in /usr/lib (thus the target device system's $prefix is '/usr'). 

Directory Contents 
/usr/bin/ Native compile tools 
/usr/lib/ Native shared libraries 
/usr/include/ Native header files 
/opt/DSPLinux/TI925DC_EVM/crossdev/bin/ Compile tools for target device 
/opt/DSPLinux/TI925DC_EVM/crossdev/arm-
linux/usr/lib/ 

Target device shared libraries 

/opt/DSPLinux/TI925DC_EVM/crossdev/arm-
linux/usr/include/ 

Target device header files 

…/fs/ Entire file system image for the target device 

Table 4: Development workstation directory layout 
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The elipse (…) indicates the developer is free to put the target device file system in any 
directory on the development worksta tion they choose.  The target device related directories 
shown above are the default locations supported by the RidgeRun TI OMAP 1510 P1 EVM 
BSP.  The files under …/fs/ in Table 4 are shown in Table 5. 

Directory Contents 
/bin/, /sbin/, /usr/bin/, /usr/sbin/, /usr/local/bin/ Target device applications 
/lib/, /usr/lib/ Target device shared libraries 

Table 5: Target device directory layout 

These other libraries are built in such a way as to make them available for cross-compiling.  The 
build system used for many open-source projects, called autoconf/automake, allowing the 
$prefix path to be set both at configuration time and at installation time.  This enables libraries, 
scripts, and applications for the target device to have paths relative to the installed system, but 
be installed into a different $prefix directory on the target device. 

4.1.1  Autoconf'd Cross-Compilation 
The GStreamer build system is based, like most open-source projects, on GNU’s autoconf, 
automake, and libtool.  These make the build process quite a bit simpler to deal with in most 
cases.  There autoconf tool contains a number of complexities that make larger projects more 
difficult to manage, but these are being solved, in many cases by patches originating from the 
GStreamer development team.  

When configuring a package to be built on the development workstation, the autoconf configure 
script runs a large number of tests to check the compile -time and run-time environment.  This 
includes checking for headers and libraries, checking the sizes and values of certain system-
supplied symbols, and various other things designed to make the package portable across a large 
number of targets. 

When cross-compiling, the build system looks at the target device’s environment, rather than 
the development workstation’s native tool chain and libraries.  The tool chain itself aids 
significantly in this process, because the default include and library search paths simply do not 
include the development workstation native paths.  Any library relied upon while cross-
compiling must be installed into the appropriate directory used by the tool chain for the target 
device.  Making the developer aware of available libraries on the target device generally  
eliminates surprises about using libraries only found on the development workstation.  Table 4 
shows the directory layout. 

The autoconf tool was designed under the assumption that the processor architecture of the 
target device is the same as the development workstation processor architecture.  This 
assumption creates a problem when the autoconf configuration process needs to check the size 
or value of a given symbol provided by the build environment.  Checking a symbol size or 
value is done under autoconf with AC_TRY_RUN, which attempts to run a program that will 
presumably output the result of the test in question.  However, a cross-compiler produces 
binaries that cannot be run on the development workstation.  Having an automated cross-
compiler build process is difficult (to impossible) when a step requires a program to run on the 
target device.  To maintain an automated build process, the GStreamer team examines each 
autoconf test run and modifies the GStreamer code that causes the test to be required in the first 
place.  However, removing all platform dependent tests was not completely successful.  To 
meet the case study deadline, GStreamer and associated libraries were built on an ARM9 
NetWinder hardware platform to allow autoco nf to run on the same processor as the used in the 
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target device.  As the GStreamer team works through the remaining issues, a fully cross-
development build system will be used. 

4.1.2  Glib 
Before GStreamer can be built, the Glib library must be compiled.  Glib is used by GStreamer 
to provide common portability constructs, data types, and most importantly the object model.  
Because of its nature as a portability layer, the Glib configuration has a large number of checks 
that look into the build environment. 

Most of the autoconf checks that require running a program to determine answers to test 
questions are either caused by a poorly designed macro supplied with Glib (to check the size of 
a type), or cases where the test program is run unnecessarily. 

Some are extremely difficult to solve, however.  The first challenge is determining the system 
capability to support pthreads.  The configure script checks what thread libraries exist, and then 
performs a series of tests to ensure the chosen thread library (pthreads on Linux) function as 
desired.  One check actually determines the contents of the pthread mutex initializer.  For cross-
compiling, this can be handled by simply including the normal 
PTHREAD_MUTEX_INITIALIZER symbol in the constructed header, though there may be 
issues with this solution on some processor architectures. 

4.2 Packaging 
Packaging is the process of taking a group of files owned by a certain program and putting them 
into a single archive file that can be installed on a system as a single piece.  Packages allows for 
clean removal and upgrading of installed programs and simplifying initial installation. 

The most common packager is RPM Package Manager.  It uses a build system based on a SPEC 
file, which contains information about the package including name, version, dependencies, and 
an abstract, as well as the instructions for building and packaging the program.  

One key note regarding RPM is its use of "BuildRoot"; a temporary directory into which the 
program is installed before being turned into a binary package.  BuildRoot is used to avoid over 
writing the installed program while building a new version of an existing package.  It takes 
advantage of autoconf's ability to use a different prefix for configuration and install time.  The 
configuration prefix is set to /usr, typically, whereas the install prefix is set to 
$buildroot/$prefix. 

Another feature of RPM is the ability to create relocatable packages.  These are packages in 
which all the files (with certain exceptions) all start with the $prefix path.  By supplying a 
$prefix directory, the user can control the package installation directory.  All the files are then 
relocated into the $prefix location. 

RPMs for development libraries are packaged typically into two distinct binary packages: 
runtime and development.  The runtime package contains the dynamic library and required 
configuration and support files, whereas the development package contains the static version of 
the library (if any) and the headers required to build against that library. 

For a cross-compilation environment, both the development and runtime packages are installed 
into the tool chain directory that contains the cross-compiler and C library for the target device.  
Controlling the installation location can be accomplished using the RPM re locatable package 
feature, which will move the target device files in /opt/arm-linux directory instead of the /usr/lib 
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directory, thus enabling the cross-compiler to find the library and header files.  The same 
package also can be installed into the target device file system image (described in the Targe t 
Device File System Image section, page 33). 

4.3 Pthreads 
Most multiprocessor machines use threads to provide a convenient programming model.  Linux 
takes advantage of multiprocessors using its symmetric multiprocessor (SMP) technology.  The 
threads operate independently, but can synchronize using certain primitives (mutexes, condition 
variables, etc.).  On a symmetric multiprocessor machine, the threads can run on separate 
processors simultaneously.  The key feature is the sharing of memory space between multiple 
threads in the same process.  On a dual-core system like the case study target device, threads 
would be a significant benefit, because allowing the use of the same programming model.  
However, Linux doesn’t have a general solution for supporting asymmetric multiprocessor 
hardware. 

Thread support on a dual-core system requires two elements.  The first element is the ability to 
manage threads on the DSP, which implies a small scheduler running on the DSP and the ability 
to coordinate threads between the GPP and DSP.  The second element is the ability for threads 
belonging to the same process to have a shared memory space.  A GPP/DSP shared memory 
space requires a DSP MMU that can map memory in the same manner as the GPP MMU.  The 
DSP MMU will need to be programmed and reprogrammed independent of the ARM MMU, 
but still allow access to the same pages as a thread in the same process running on the ARM.  
Synchronization primitives must be provided by way of inter-CPU interrupts, and/or atomic 
memory operations. 

The real challenge in supporting threads on the DSP is the inability to run GPP code on the 
DSP.  Another code set is required for the DSP.  Properly dealing with the DSP code requires a 
set of tools to link the two kinds of binaries (ARM and DSP) together, as well as a loader that 
can work with the threading subsystem.  

4.3.1  Impact on GStreamer 
Because GStreamer has a thread container, i.e. one that causes all of its children to run in a 
different thread instead of the main pipeline context, it's a fairly straightforward process to 
extend GStreamer to use these kinds of pthreads.  However, since they are not supported on the 
target device, another approach is needed. 

A small GStreamer-compatible core could be created specifically for the DSP.  The main issue 
is dealing with the different kinds of code.  A GStreamer plugin subsystem modification 
supporting multiple code binaries would be needed.  The case study investigated various 
approaches to solving the challenge of porting GStreamer, which relies on threads, to a dual-
core environment where the DSP doesn’t support threads.  A different solution than the one 
described here was used.  See the DSP Support section (page 20) for details. 

4.4 Base Libraries 
Although GStreamer is a library, it uses other libraries as well.  The first hurdle in reducing the 
size of GStreamer was the fact that the initial implementation was done on top of the Gtk+ 
library, which is a GUI toolkit for X (and other environments).  Gtk+ provides a well-designed 
object model written in C, which simplified the GStreamer design.  However, it meant that any 
application built with GStreamer also was built with Gtk+, which in turn required an active X 
server (which is notoriously large in size). 
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The solution came a year later when the Gtk+ team moved the object model into the lower-level 
library, Glib, calling it GObject.  This removes GStreamer’s need to use the Gtk+ library 
entirely, along with the need for an X server.  Although changing GStreamer to use GObject 
was straightforward, the transition was difficult because implementing GObject was 
challenging.  The port was initially done using a GObject shim that converts the GObject-based 
code at compile-time to use Gtk+.  When the GObject was done, the shim was removed.  
Removing the dependence on Gtk+ removed around a megabyte of code from the x86 version, 
probably more from the ARM equivalent.  Refer to Table 8 (page 7) for a full description of the 
total memory footprint reduction. 

4.5 Other Subsystems 
In addition to the above subsystems, the entire DEBUG/INFO system can be compiled out.  The 
DEBUG/INFO system normally gives significant debugging information in a very readable 
form.  ANSI text colors show the category of each debug message, as well as the pthread and 
cothread ID.  Each debug category can be turned on and off separate ly.  During normal 
compilation only the INFO messages are compiled in.  Development compilations also enables 
the DEBUG messages.  For an embedded system, debug/info messages are disabled once 
debugging is complete. 
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4.6 Compilation Options 
There are several options that can be given to the compiler to produce smaller code.  The first 
and most obvious of these is '-Os', which tells the compiler to optimize for size.  The original 
GStreamer makefile did not use complier options to minimize memory usage.  Unneeded 
symbols can be stripped from the libraries (using the strip utility).  Libraries that support 
disabling asserts and memory pools can be further reduced (using the conditional compile 
directives G_DISABLE_ASSERT and G_DISABLE_MEM_POOLS).  These savings are show below. 

Library size 
Stripped 
Symbols 

Optimize for 
minimum size 

Stripped symbols 
and min size 

Stripped symbols, 
min size, and 

disabled asserts 
and memory pools 

Percentage 
Savings 

zlib 66805 60676 61844 55472 17% 
libxml 802749 403180 781873 398252 50% 
glib 1128203 516380 1104001 501744 486492 57% 
gobject 720650 269488 702896 259540 64% 
gmodule 61608 11400 59892 11292 82% 
gthread 68354 16116 68142 16048 77% 
mad 203192 92944 193950 89912 56% 

Average 
Savings  55% 3% 56% 57% 57% 

Table 6: GStreamer libraries with various compacting options 

Optimizing for size had a very small 3% overall impact.  Given the anticipated drop in 
performance, optimizing for size is not recommended using the 2.95.2 gcc compiler with the 
10/22/99 ARM patches. 

The ARM processor on the target device supports the THUMB instruction set.  Typical code 
size reduction when using the THUMB instruction set compared to the ARM instruction set is 
approximately 40%.  A THUMB GNU compiler was not available for this case study, so no 
actual code footprint reduction measurements were made. 

4.7 Conditional Compilation 
GStreamer is a feature-rich multi-media streaming library initially targeted for desktop PC 
environments.  Thus, there are quite a few features in GStreamer that are more appropriate to 
larger, desktop-style applications.  These desktop features have little or no value in an 
embedded environment.  A modification to the build process was needed to allow building 
GStreamer with all the desktop features and also building with features appropriate for 
embedded devices.  Like the Linux kernel, GStreamer uses conditional compilation to control 
feature inclusion.  The source code was changed to wrap the functionality appropriate only to 
desktop environments with conditional compile instructions. The conditional compile directives 
added to the GStreamer source code are listed in the table below. 
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Conditional 
Compile Directive 

Desktop Feature Description 

disable-loadsave disable pipeline 
XML load/save  

The load/save feature is only useful for systems that 
save the structure of a GStreamer pipeline to an XML 
file and load it back later.  An embedded device will 
almost never need this feature. 

disable-typefind disable typefind 
plugin  

The typefind plugin enables a media player to 
determine the type of an unknown stream.  It uses 
functions provided by the various codecs to accomplish 
automatic support of unknown streams.  An embedded 
device only requires this capability if the device 
supports downloading new codecs. 

disable-autoplug disable 
autoplugger 
subsystem  

The autoplug subsystem is a collection of elements that 
enable an application to deal with a media stream 
without any prior knowledge of the type of the stream.  
It acts as a 'magic plugin' to convert betwee n two 
existing elements, searching the list of available 
plugins for the shortest path.  This works best if there 
are a large number of available plugins.  Due to 
memory constraints, embedded devices are likely to 
support the appropriate plugin codec rather than use a 
series of codecs to transform the stream into a 
supported format. 

disable-parse disable 
command- line 
parser  

The command-line parser is the core of the gstreamer-
launch tool, which enables fast prototyping of many 
types of pipelines.  It may be useful in some embedded 
situations, because it allows a very concise description 
of the pipeline to be stored for later use.  The 
GStreamer command line parser is better than XML for 
simple pipelines. 

disable-trace disable tracing 
subsystem  

The trace subsystem feature is mainly targeted to 
developers.  After development is complete, the tracing 
feature doesn’t add any user features in embedded 
devices. 

disable-registry disable plugin 
registry  

The registry allows querying a large number of plugins 
without preloading, which is primarily useful for 
systems with a large collection of codec plugins. 

Table 7: GStreamer conditional compile directives 

The optional desktop features with the largest memory footprint are load/save and registry, 
which when both disabled will remove all dependencies on the XML library, which is also 
rather large (because it handles Unicode and various other capabilities).  Detailed values are 
shown in the table below savings from both compiler optimization and conditional compiler 
directives. 
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Conditional 
Compile Directive 

GStreamer  GStreamer with 
required libraries 

Notes 

Starting point 264947 3316508 Required libraries include zlib, 
libxml, glib, gobject, gmodule, 
gthread, and mad 

Stripped symbols 232080 1602264  

Above with 
Compilation for 
minimum size 

215272 1547532  

Above with 
disable-loadsave 
disable-registry 

193836 1072372 No longer need zlib or libxml 

Above with 
disable-typefind 
disable-autoplug 
disable-parse 
disable-trace 

180068 1058604  

Above with 
disable INFO 
disable DEBUG 

160372 1038908  

Above with 
disable checks 
disable asserts 

106876 895500 glib was not compiled with 
INFO and DEBUG disabled 
due to a compiler error.  An 
addition 33% reduction in glib 
is excepted with INFO and 
DEBUG disabled 

Total percentage 
savings 

60% 73%  

Table 8: GStreamer conditional compile memory reduction 

The effort to minimize the GStreamer specific code created a 60% memory footprint savings.  
However, GStreamer is small (12%) compared to the set of libraries used with GStreamer.  
Removing the need for zlib and libxml created savings much larger (443 Kbytes) than the 
GStreamer internal memory footprint changes (85 Kbytes).  Effort spent tuning GStreamer 
without looking at the overall system would be effort poorly utilized. 

4.8 Code Changes 
In analyzing the generated code, several unexpectedly large code sequences were found.  Many 
of these were trimmed down, and in some cases the change provided a significant performance 
boost as well. 

4.8.1  Object Type Checking Macros 
The GStreamer macros of form GST_IS_<type>(object) are designed to compare the first four 
bytes of the object with the appropriate type.  The type itself is gotten from GST_<type>_TYPE, 
which typically calls a function that keeps track of a local static variable.  The variable is 
initialized to zero, and gets set the first time the function is called by way of registering the 
type.  

The GST_IS_<type> macro is built from G_TYPE_CHECK_INSTANCE_TYPE, which originally 
called the g_type_instance_is_a() function.  A GStreamer team patch cleaned this up so the 
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type is directly compared before resorting to the slow function call, but this isn't enough in 
some cases.  Any time the object type does not match the type being checked, the 
g_type_instance_is_a() function is called.  An example is checking an instance of a child 
class to see if it's a member of the parent class. 

The resulting check code looks roughly like:  

if (object->type == type) return TRUE; 
else return g_type_instance_is_a(type,object); 
 
This compiles into roughly 15 ARM instructions, which is quite large considering these checks 
are done rather often.  

The solution was two-fold:  

1. Since gst_init() must be called before GStreamer is used, the functions that returns 
the various object types can be eliminated, moving the type registration into and making 
reduce to a static global. 

2. Implementation of, which does nothing but directly compare the object type, for cases 
where we only care if it is exactly the type being checked.  This reduces the check to:  

return (object->type == type);  
 
which generates inline code and compiles to only a couple of instructions. 

4.9 TaskBridge DSP Support 
The target device contains both an ARM general purpose processor (GPP) and a TI C55 digital 
signal processor (DSP).  A large amount of media stream processing can and should be 
offloaded to the DSP.  Because of GStreamer's modular design, high-level applications are not 
aware of which hardware is processing the streaming media. 

GStreamer creates a pipeline of the various filters used in processing the media stream.  An 
example of a simple MP3 stream pipeline is a stream reader, MP3 to PCM codec, followed by 
the audio driver.  Pipelines are a common concept within Unix – standard out (stdout) from the 
previous process can be piped to standard in (stdin) on the next process.  Using Unix style 
shell pipe command, the MP3 stream pipeline can be represented as shown below with the ‘|’ 
being the pipe command: 

$ cat song.mp3 | mp3_to_pcm_codec > /dev/audio 
 
The stream reader may be reading the MP3 data from the Linux file system (like shown above) 
or from the network, both activities best handled by the GPP.  The MP3 to PCM codec is ideal 
for DSP handling.  Typically, the audio driver is also controlled by the DSP, so piping the PCM 
data generated by the DSP codec directly to the audio driver is the most efficient.  If the audio 
driver is under GPP control, then the PCM data must be passed back from the GPP.  Even in 
this simple example, the power of using a pipeline concept in GStreamer is evident. 

GStreamer has a standard plugin called 'pipefilter' that is designed to work like the Unix pipe 
command.  pipefilter forks a copy of a the Linux filter program (e.g. the MP3 codec) and 
attaches to the stdin and stdout file descriptors.  The file descriptors are then attached 
internally to the sink and src pads of the GStreamer pipefilter element.  This allows us to 
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fork() a copy of a program that the kernel will run like any forked process, and tie stdin and 
stdout to the GStreamer pipeline.  The pipefilter gets us one step closer to doing the main 
streaming decode on the DSP. 

The second step is provided by DSPLinux.  TaskBridge is a DSPLinux technology that allows a 
process running on the GPP to create a process that runs on the DSP, but looks like a standard 
Linux process to the rest of the programs running on the GPP.  We can build a DSP MP3 codec 
program that takes MP3 data on stdin and writes decoded audio to stdout. The DSP MP3 
codec resides on the Linux file system as an executable file.  When GStreamer pipefilter is used 
as part of the pipeline, it forks the DSP MP3 codec program as described above.  TaskBridge 
identifies the executable as DSP code and handles the necessary setup to get the MP3 codec 
loaded into DSP memory and running.  TaskBridge also makes stdin and stdout available to 
the DSP-based MP3 codec. 

The current implementation of TaskBridge only handles one DSP-based process.  For simple 
pipelines, this should be sufficient.  However, if additional filters are used in a streaming 
playback — like a parametric equalization filter — being able to fork multiple DSP-based 
processes would be useful.  Even in the simple case of a cat song.mp3 | mp3_to_pcm_codec 
> /dev/audio pipeline, both the MP3 decoder and the audio driver may be on the DSP.  
TaskBridge must be optimized so the stdout data of the DSP MP3 decoder won’t require 
processing by the GPP in order to get to the DSP-based audio driver.  These are future 
optimizations that are not part of the case study demo. 

Another possible solution is to have a small version of the GStreamer operational core run on 
the DSP to enable full GStreamer DSP plugins.  The arbitrary containment features of 
GStreamer could be used to build a "DSP bin" to logically encapsulate elements that run on the 
DSP and handle data transfer to and from the DSP. This approach works with TaskBridge, 
which only supports forking a single DSP process.  For this case study, TaskBridge was used 
with GStreamer’s pipefilter.  Again, this optimization is not part of the case study demo. 
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5 Linux Kernel Improvements 
Memory footprint improvements to the Linux kernel come in several forms.  Since Linux is 
primarily targeted to desktop and server platforms, there are many straightforward approaches 
that can be followed to reduce the kernel footprint.  Several of the methods are explained below, 
along with specific applications of those methods and measurements of the improvements 
made.  The summary section describes other ways to apply the methods to see even bigger 
memory footprint savings. 

Before diving into the memory improvement methodologies, it is worth describing an actively 
staffed effort to make Linux work in environments with simple processors –  namely the 
µCLinux (http://www.uclinux.org/) effort and the associated µClibc library.  The focus of 
µCLinux is on processors without memory management units.  For this case study, the ARM9 
has an MMU and the services the MMU provide make it an important part of processor.  
However, other memory footprint related changes made to Linux and glibc to derive µCLinux 
and µClibc could be useful in reducing the Linux footprint.  For this case study, we did not refer 
to µCLinux improvements and instead use “first principles” to identify footprint reduction 
opportunities. 

Referring to the file size of an executable or a library is a poor indicator of what memory 
resources will be used.  A more accurate way is to examine object files and look at the text, 
data, and bss segment sizes.  The text segment contains the code image and the values of 
constant variables.  The data segment contains the initialized data values.  The bss segment 
indicates the size required for the uninitialized data section.  The nm, objdump, and size utilities 
can be used to examine object files created by the compiler or linker. 

5.1 Starting Point 
The size utility outputs the total size of the various segments.  When used on the kernel 
executable, the total sizes of the various segments can be determined.  Unless otherwise sta ted, 
all memory footprint values are measured on the target device.  For this case study, the starting 
point values are: 

$ arm-linux-size vmlinux 
 
   text    data     bss     dec     hex filename 
1214980   64276  151736 1430992  15d5d0 vmlinux 

Listing 1: Kernel starting size for xconfig 

The dec and hex columns are the sum of the text, data, and bss segment values in decimal and 
hexadecimal representation respectively.  The value in the dec column is used when looking at 
the total memory requirements of a component or the kernel. 

The various improvements were made over several weeks, during which time the code base was 
improved.  For this reason, the starting point values do not match exactly.  Since the objective 
of the case study is to understand the memory reduction improvement, the difference between 
the improved component/kernel compared to the starting point is the critical information.  Using 
different starting points is unfortunate, but doesn’t invalidate the results. 
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5.2 xconfig – Feature Inclusion Configuration Tool 
The Linux kernel is modularized in several different ways.  All processor dependencies are 
isolated so the kernel can be built for use on one of several different processors.  For this case 
study, the kernel is built using the i386 processor code or the ARM9 processor code, as 
appropriate.  Major kernel features are supported in a manner that allows the feature inclusion 
or exclusion based upon selections made by the user via the xconfig configuration tool.  Device 
driver configuration options include statically linking with the kernel, excluding the driver, or 
making the driver into a demand loaded module.  The Case Study Starting Configuration 
section (page 54) describes the initial configuration used. 

The xconfig configuration tool was run several times, each time we removed a feature.  The 
kernel was rebuilt after each run to see the changes in kernel size (using the size utility).  Here 
are the results: 

Change text data bss dec hex 
Starting point 1214980 64276 151736 1430992 15d5d0 

RARP/BOOTP removed 1198884 64136 151704 1414724 159644 

CDROM removed 1177932 52020 151704 1381656 151518 

NFS support removed 1013348 46724 145992 1206064 126730 

Verbose kernel/user messages 
turned off 

1012244 46724 145992 1204960 1262e0 

Percentage savings 17% 27% 4% 16% 16% 

Table 9: Memory reduction via xconfig 

Carefully understanding the operating system features needed in the embedded device and 
excluding all other features using xconfig is the simplest method to reduce the Linux kernel 
memory footprint. 

5.3 Static Buffer and Array Size Analysis 
Statically allocated RAM is in the data and bss segments.  The data segment contains the initial 
values for the variables and the bss segment indicates the size needed for the uninitialized 
variables.  We can examine the list of data and bss segments with a size greater than or equal to 
0x1000 (4096) bytes with the following command: 

$ arm-linux-nm --size-sort vmlinux | grep -v 00000 | grep “ [bBdD] “ 
00001000 B con_buf 
00001000 B pidhash 
00001000 b pty_state 
00001000 b swap_buffer 
00001578 B kstat 
00001648 D contig_page_data 
00001fe0 b ro_bits 
00002000 D init_task_union 
00004000 b log_buf 
000043f0 B fb_display 
00008780 B blk_dev 

Listing 2: Largest statically allocated variables 

If the second column contains a ‘b’ or ‘B’, it is a bss segment.  Likewise, if the second column 
contains a ‘d’ or ‘D’, it is a data segment.  A lower case segment indicator means the segment is 
local and uppercase means the segment is global. 
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The kernel code was examined to find where large static arrays were allocated.  Since the 
capabilities of an embedded device are typically much more limited than a desktop or a server, 
most of these arrays can be made smaller without impacting operation. 

Purpose Initial 
Value 

Modified 
Value 

File 

Number of supported disks 
DK_MAX_MAJOR 
DK_MAX_DISK 

16 1 /include/linux/kernel_stat.h 

Maximum block device driver number 
MAX_BLKDEV 

255 31 /include/linux/major.h 

kmsg message log size  
LOG_BUF_LEN 

16384 4096 kernel/printk.c 

Maximum number of tty consoles 
MAX_NR_CONSOLES 

63 5 /include/linux/tty.h 

Table 10: Linux kernel code changes for static variable / array memory reduction  

Again, the kernel was rebuilt after each source code modification to see the changes in kernel 
size (using the size utility).  Here are the results: 

Change text data bss dec hex 
Starting point 1012244 46724 145992 1204960 1262e0 

Number of supported disks: 1 1012180 46724 140888 1199792 124eb0 

Maximum block device driver number: 
31 

1012180 46724 95192 1154096 119c30 

kmsg message log size: 4K 1012180 46724 82904 1141808 116c30 

Maximum number of tty consoles: 5 1012180 46724 65016 1123920 112650 

Percentage savings 0% 0% 55% 7% 7% 

Table 11: Memory reduction via static variable / array related code changes 

The nm utility was run again and the following table contains the comparison with the first run 
of nm listed above for the items that were changed. 

Change Segment Name  Initial Value Value After Change  
Number of supported disks: 1 kstat 00001578 0000018c 

Maximum block device driver 
number: 31 

ro_bits 
blk_dev 

00001fe0 
00008780 

000003e0 
00001080 

kmsg message log size: 4K log_buf 00004000 00001000 

Maximum number of tty 
consoles: 5 

fb_display 000043f0 00000570 

Table 12: bss reduction via static variable / array related code changes 

Identifying large kernel static RAM allocations and examining the source code to see if those 
allocations can safely be reduced is another method for reducing the kernel memory footprint. 
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In summary, xconfig was used to change which features where included in the kernel build, 
and the following 4 source files were modified: 

include/linux/kernel_stat.h 
include/linux/major.h 
include/linux/tty.h 
kernel/printk.c 
 
Together these changes resulted in the reduced footprint listed in the following table: 

 text data bss dec hex 
Starting point 1214980 64276 151736 1430992 15d5d0 

After changes 1012180 46724 65016 1123920 112650 

Percentage savings 17% 27% 57% 21% 21% 

Table 13: Memory reduction via xconfig and static variable /array code changes 

5.4 Dynamic Memory Usage Analysis 

5.4.1  Overview 
Kernel routines dynamically allocate memory from the page allocator, slab allocator, or the 
kernel memory allocator.  Analyzing which routines calls the various allocators and identifying 
those routines consuming large amounts of dynamic memory is a standard method for reducing 
dynamic memory usage. 

5.4.2  Page Allocator 
The page allocator is the lowest level memory allocator in Linux.  Generally, the kernel does 
not use the page allocator directly (the file system subsystem is an exception) since the 
minimum size alloca tion is one page, or 4096 bytes.  Instead the slab allocator is used to more 
efficiently manage memory.  Reducing the file system’s dynamic memory allocations via the 
page allocator was not investigated beyond what is described in the File System section (page 
29). 

5.4.3  Slab Allocator 
The slab allocator manages pools of memory for specific purposes.  When allocated memory is 
freed, the slab allocator keeps the memory associated with its pool.  Only when the underlying 
page allocator runs low on memory does the slab allocator release free memory from the 
various pools.  The advantage of this approach is the reduction in time for reallocating memory 
for the same purpose is much faster than performing all the steps necessary for allocating from 
general memory.  This approach is used because the developers of Linux noticed that the 
various subsystems freed memory only to later allocate memory for the same purpose. 
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The current state of the slab allocator can be interrogated via the /proc/slabinfo pseudo-file, 
as shown below.  The columns are (1) cache name, (2) cache entries in use, (3) cache entries 
allocated, (4) cache size, (5) active slabs, (6), number of allocated slabs, and (7), the get free 
page order flag.  

$cat /proc/slabinfo 
slabinfo - version: 1.1 
kmem_cache            57     78    100    2    2    1 
nfs_read_data          0      0    352    0    0    1 
nfs_write_data         0      0    384    0    0    1 
nfs_page               0      0     96    0    0    1 
nfs_fh                 0      0     96    0    0    1 
blkdev_requests      512    520     96   13   13    1 
dnotify cache          0      0     20    0    0    1 
file lock cache        0     39    100    0    1    1 
fasync cache           0      0     16    0    0    1 
uid_cache              0      0     32    0    0    1 
tcp_tw_bucket          0      0     96    0    0    1 
tcp_bind_bucket        3    113     32    1    1    1 
tcp_open_request       0      0     64    0    0    1 
inet_peer_cache        0      0     64    0    0    1 
ip_fib_hash            5    113     32    1    1    1 
ip_dst_cache           0      0    160    0    0    1 
arp_cache              0      0    128    0    0    1 
skbuff_head_cache      1     24    160    1    1    1 
sock                   8     10    800    2    2    1 
inode_cache          163    170    384   17   17    1 
bdev_cache             4     59     64    1    1    1 
sigqueue               0     29    132    0    1    1 
kiobuf                 0      0    128    0    0    1 
dentry_cache         226    240    128    8    8    1 
filp                  48     80     96    2    2    1 
names_cache            0      2   4096    0    2    1 
buffer_head         8324   8360     96  209  209    1 
mm_struct              6     24    160    1    1    1 
vm_area_struct       126    177     64    3    3    1 
fs_cache               5     59     64    1    1    1 
files_cache            5      9    416    1    1    1 
signal_act             6      9   1312    2    3    1 

Listing 3: Slab allocator results 

To make the listing more manageable, I deleted the slabs supporting the kernel memory 
allocator, which is discussed below.  The largest four caches are all associated with the file 
system and block drivers.  The four caches are dentry_cache (28928), blkdev_requests (49152), 
inode_cache (62592), and buffer_head (799104).  Adjusting the file system parameters, as 
described in the File System section (page 29), reduces the amount of slab memory allocated. 

5.4.4  Kernel Memory Allocator 
For this case study, the kernel memory allocator (KMA) was examined in detail.  The kernel 
memory allocator was chosen for analysis because there didn’t appear an easy way to  identify 
which kernel subsystem was using KMA.  When general kernel memory is allocated and freed, 
the KMA kalloc()and kfree() functions are used.  These functions operate on a series of 
geometrically distributed slab sizes from 32 bytes to 131072 bytes.  If a memory region larger 
than 131072 is required, the KMA cannot be used. 
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To identify any opportunities for dynamic memory usage reduction, the kernel source code was 
modified.  Each subsystem was assigned a unique identifier.  The KMA functions were 
modified to accept the kernel subsystem identifier and track current outstanding allocations and 
maximum allocations.  Also, the number of calls to kmalloc() and kfree() was tracked.  All 
calls to the KMA where modified to include the subsystem identifier.  Finally, a new proc 
pseudo file system entry was created, /proc/kmainfo, to allow access to the KMA usage 
statistics.  The results are shown below (run on the x86 development workstation, not the 
ARM9 target device). 

$ cat /proc/kmainfo 
kernel memory allocator stats - version: 1.0 
subsystem kmalloc()s kfree()s current maximum directory 
total 33040 32701 
kernel 17 3 672 672 arch/i386/kernel 
pcmcia 17 3 3008 3264 drivers/pcmcia 
usb 34 21 5536 5696 drivers/usb 
ide 56 0 5152 5152 drivers/ide 
pci 32 0 12320 12320 drivers/pci 
sound 3 0 96 96 drivers/sound 
char 119 62 46880 46880 drivers/char 
net 1 0 1024 1024 drivers/net 
ipc 184 173 1344 2080 ipc 
core 12416 12414 256 58880 net/core 
unix 49 33 960 960 net/unix 
mm 15 4 352 384 mm 
kernel 137 115 864 896 kernel 
fs 19954 19873 22528 28992 fs 
autofs4 2 0 96 96 fs/autofs4 
devpts 2 0 1056 1056 fs/devpts 
ext2 2 0 64 64 fs/ext2 

Listing 4: Kernel memory allocator results 

As can be seen above, the subsystem using the largest amount of KMA is the char driver at 
46880 bytes.  Since the maximum used by any one kernel subsystem was only around 50K, we 
did not investigate KMA RAM usage reduction further.  The most interesting discovery is the 
number of kalloc() and kfree() calls made by the network core (net core) and file system 
(fs) kernel subsystems.  The numbers above were captured right after boot up, thus the calls 
made by net core and fs happened during the boot up process.  There may be a boot up 
performance improvement possible by examining why net core and fs repeatedly allocated 
and freed memory.  For a consumer embedded device, boot up time will likely be critical.  

5.4.5  Swap Daemon Improvements 
The starting point was an ARM9 Linux kernel with drivers for the target hardware and other no 
optimization.  N ote that these values differ a bit from the other starting point values due to 
improvements make to the target hardware device drivers that were being developed in parallel 
with the case study.  

$ arm-linux-size vmlinux 
   text    data     bss     dec     hex filename 
1221884   64584  151160 1437628  15efbc vmlinux 

Listing 5: Dynamic memory allocation starting point 
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The free utility gives a summary (in kilobytes) of system memory usage: 

$ free 
              total         used         free       shared      buffers 
  Mem:        30808         8668        22140            0         6144 
 Swap:            0            0            0 
Total:        30808         8668        22140 

Listing 6: Available memory starting point 

As can be seen in the previous section, the Linux kernel developers have been fairly careful 
when allocating static variables, especially statically allocated arrays.  Most of the state 
information managed by the kernel is stored in memory that is dynamically allocated.  To get an 
understanding of how the kernel uses dynamic memory, we have to interact with a running 
system.  Many kernel data structures can be interrogated via the proc file system.  The meminfo 
entry in the proc file system displays the current snapshot of various kernel memory variables. 

$ cat /proc/meminfo  
         total:    used:    free:  shared: buffers:  cached: 
Mem:  31547392  8962048 22585344        0  6291456  1089536 
Swap:        0        0        0 
MemTotal:        30808 kB 
MemFree:         22056 kB 
MemShared:           0 kB 
Buffers:          6144 kB 
Cached:           1064 kB 
Active:           7208 kB 
Inact_dirty:         0 kB 
Inact_clean:         0 kB 
Inact_target:       28 kB 
HighTotal:           0 kB 
HighFree:            0 kB 
LowTotal:        30808 kB 
LowFree:         22056 kB 
SwapTotal:           0 kB 
SwapFree:            0 kB 

Listing 7: Dynamic memory information results  

Recall that the cat /proc/meminfo  command listed above was executed by Linux running on 
an ARM9.  The first interesting item to note is the target hardware has 32Mbytes of installed 
memory.  The second item to note is all swap related variables are all zero.  This is because the 
target hardware doesn’t have a disk.  However, the kswapd kernel swap daemon  is still running, 
and using resources.  We can disable the kernel swap daemon by modifying the 
kernel/vmscan.c file.  A simple way to disable the kernel swap daemon is to comment out the 
line in kswapd_init()  that starts the kernel swap daemon, and turn kswapd() and 
wakeup_kswapd() into empty functions.  Obvious, much more code can be removed, but at this 
point we are focusing on reducing dynamic memory usage. 

The other daemon started in kswapd_init() is the kernel reclaim daemon, which frees up 
pages that are no longer needed.  The reclaim daemon is still necessary for demand paging 
(described in the Target Device File System Image section, page 33). 
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After removing the kernel swap daemon, the free command was run again to see the memory 
savings. 

$ free 
              total         used         free       shared      buffers 
  Mem:        30812         8140        22672            0         6144 
 Swap:            0            0            0 
Total:        30812         8140        22672 

Listing 8: Memory available after disabling swap daemon 

In summary, a significant user of dynamic memory is the kernel swap daemon, which is not 
used in embedded devices without a disk, as shown in the table below. 

Change Used Memory 
(Kbytes) 

Starting Point 8668 

Kernel swap daemon disabled 8140 

Savings 528 

Table 14: Summary of memory reduction via dynamic memory related code changes 

5.5 File System 
At first glance, the entire kernel file subsystem could be excluded from the build when targeting 
embedded devices.  A much simpler flash block-read / block-write approach might be sufficient 
for keeping the few permanent variables used by some embedded devices.  Storage devices 
holding 1024 bytes or smaller probably could implement this approach efficiently. 

However, when flash devices get in the 4 Mbytes and larger range, using a traditional file 
system approach for managing the storage space provides a gain in flexibility that should be 
utilized.  Recall that there is a limit to the number of times a block of flash memory can be 
written before it is worn out.  The Journaling Flash File System (JFFS) contains the algorithms 
needed to distribute the usage of the flash memory blocks evenly to eliminate problems with a 
single block being heavily utilized, and thus prematurely worn out.  By using JFFS, the 
developers can concentrate on end user features, not infrastructure technology like prolonging 
the life of hardware components. 

Since the target hardware has 32 Mbytes flash, using the file system to manage part or all of the 
flash is useful.  Therefore we will assume the file system is included in the kernel and we need 
to examine how to reduce its memory footprint. 

5.5.1  File System RAM Usage Analysis 
Many buffers are allocated by the file system to hold copies of the information on (or headed to) 
the mass storage device.  Also, the kernel is able to detect when files are being accessed 
sequentially and the kernel performs a read-ahead so when the application requires the data, the 
operating system has already pre-fetched it from the mass storage device.  In addition, buffers 
hold copies of the directory structure (dentry) and the internal data structure (inode) keeps 
track of where on the mass storage device files are stored.  Using all these buffers reduces the 
number of times information is read from the mass storage device, thus improving performance.  
For a desktop or server environment, this performance improvement can be substantial. 
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However, in an embedded device, reading and writing files is not done as frequently.  Also, if 
the embedded device uses flash, reading information is typically faster than with a mechanical 
disk type storage device.  Therefore, reducing the size of buffer caches used appears to be a 
simple change to reduce the RAM footprint.  To test this theory, the various cache sizes were 
measured as the amount of installed RAM was changed.  The values were captured from the 
messages displayed on the console as the kernel booted (also, the dmesg command can be used 
to capture the values right after the first login).   The following table summarizes the findings. 

Installed 
RAM 

Mbytes 

Dentry Cache Buffer Cache Page Cache Inode Cache 

 bytes entries bytes entries bytes entries bytes entries 
16 16384 2048 4096 1024 16384 4096 8192 1024 

8 8192 1024 4096 1024 8192 2048 4096 512 

4 4096 512 4096 1024 4096 1024 4096 512 

Table 15: Cache sizes versus installed RAM memory 

The kernel automatically adjusts the buffer sizes based on the installed RAM memory.  This 
means there is not big memory footprint gains by manually changing the cache sizes.  As an 
embedded device under development is nearing completion, small gains could be found by 
manually tuning the cache sizes. 

5.5.2  File System ROM/Flash Footprint Analysis 
The kernel file subsystem was examined to see if the ROM/flash footprint could be reduced.  
The size of the starting configuration (as listed in Case Study Starting Configuration section, 
page 54) is shown below.  A second configuration is also shown excluding ext2fs, procfs, 
devfs, cdromfs, nfs, msdos and, initrd/ramfs.  The xconfig tool was used to change the 
configuration and then the modified kernel was rebuilt.  Since we are not statically linking an 
application with the kernel, the modified kernel cannot boot, but it is a good reference point to 
show the minimum possible file system kernel sub -system footprint size. 

Change text data bss dec hex 
Starting point 1221852 64584 151160 1437596 15ef9c 

Removed ext2fs, procfs, devfs, 
cdromfs, nfs, msdos and, 
initrd/ramfs 

916644 43936 142280 1102860 10d40c 

Percentage savings 25% 32% 6% 23% 23% 

Table 16: Case study file system memory reduction 

One approach to reducing the kernel file subsystem is to compare the case study size against the 
size of a different version of the file system.  The Linux build process links to gether each 
subsystem, and a final link of all the subsystems is then performed to generate the vmlinux 
kernel file.  The kernel file subsystem is linked into a file called fs.o.  We can compare various 
fs.o file sizes to get more insight into approaches to reducing the ROM/flash footprint. 
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Change text data bss dec hex 
Starting point fs.o 376644 23893 8164 408701 63c7d 

fs.o with ext2fs, procfs, devfs, 
cdromfs, nfs, msdos and 
initrd/ramfs removed 

139246 1740 5060 146046 23a7e 

fs.o from the uClinux 2.0.38 
kernel plus minix, fat, vfat, and 
romfs file systems sizes 

151148 12420 18008 181576 2C548 

Percentage savings (2.0.38 
compared to case study starting 
point 60% 48% 

21% 
larger 56% 

 

Table 17: Case study versus uClinux 2.0.38 file system comparison 

From the above table, the total size of a usable 2.0.38 uClinux file system (181576) isn’t that 
much larger that a completely stripped down case study file system.  One strategy to reducing 
the file system ROM/flash footprint is to use the file system from an older version of the kernel.  
This approach is discussed more in the Summary section (page 47).  Using the file system from 
the 2.0 version of the kernel could offer good memory savings.  However, there will be linking 
problems that must be carefully analyzed to resolve correctly.  The next section discusses the 
linking problem details. 

5.6 Networking 
One of the main reasons that there is so much interest in Linux as an embedded operating 
system is due to its great network support.  Other operating systems targeted to embedded 
applications and home grown embedded operating system have little or no network support. 

For this analysis, we started with networking turned off, and then added functionality, as shown 
in the table below. 

 
Change 

text data bss dec hex 

Starting point – networking turned 
off 

742420 42732 139308 924460 e1b2c 

Kernel with networking turned on, 
but no TCP/IP or drivers (just 802 
and network scheduling) 

795684 50652 219600 1065936 1043d0 

Kernel w/networking,TCP/IP, and 
SMC9194 driver 

998012 50980 223124 1272116 136934 

Table 18: Size of case study kernel with various networking capabilities enabled 
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Size information for uClinux 2.4.10 kernel builds with similar configurations were also 
captured in the following table. 

Change text data bss dec hex 
Starting point – networking off 376488 18980 123492 518960 7eb30 

Kernel with networking turned on, 
but no TCP/IP or drivers (just 802 
and network scheduling) 

409912 22368 124128 556408 87d78 

Kernel w/networking,TCP/IP, and 
SMC9194 driver 

626672 25260 127984 779916 be68c 

Table 19: Size of 2.4.10 uClinux kernel with various networking capabilities enabled 

Unfortunately, a different .config file was used when building the of 2.4.10 uClinux kernel, so 
comparing these results with those of the 2.0.38 kernel are not entirely meaningful.  However, 
the size differences are compared in relative terms below. 

First we build the uClinux 2.0.38 kernel under the same networking configurations and captured 
the following results. 

Change text data bss dec hex 
Starting point – networking off 433744 41076 65280 540100 83dc4 

Kernel with networking turned on, 
but no TCP/IP or drivers (just 802 
and network scheduling) 

445312 43552 66816 555680 87aa0 

Kernel w/networking,TCP/IP, and 
SMC9194 driver 

557152 47724 70912 675788 a4fcc 

Table 20: Size of uClinux 2.0.38 kernel with various networking capabilities enabled 

The results comparing the case study, the 2.4.10 uClinux, and the 2.0.38 kernel are summarized 
in the table below. 

Kernel Networking turned on  
Delta size 

Networking with TCP/IP and 
SMC9194 driver - Delta size 

Case study 141476 347656 

2.4.10 uClinux 37448 260956 

2.0.38 uClinux 15580 135688 

Table 21: Comparison of various kernels with various networking capabilities enabled 

The table lists the delta size of the kernel (column labeled dec) compared to the kernel size with 
networking disabled.  Around a 100 Kbyte saving is possible using the uClinux 2.4 network 
stack instead of the regular 2.4 network stack used in the case study, with most of the saving 
being in reduced RAM usage.  If the 2.0 networking features are sufficient, 200 Kbyte savings 
are possible by using an older version of the uClinux network stack. 

We replaced the case study kernel file subsystem with the uClinux 2.0.38 code.  The code 
compiled without error.  However, during the linking phase, 43 externals were unresolved, as 
listed in Table 22.  Each unresolved external requires investigation and a code changes made, 
followed by through testing.  Using an older kernel subsystem with the case study kernel 
demonstrates that interfaces and shared variables internal to the kernel are changed as the kernel 
developers improve the code.  However, the external kernel interfaces, those used by 
applications, are very stable. 
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arp_broken_ops 
arp_tbl 
csum_partial_copy 
__csum_partial_copy_fromuser 
current_set 
datagram_select 
dev_alloc_skb 
devinet_ioctl 
dev_kfree_skb 
dev_lockct 
icmp_reply 
in_dev_finish_destroy 
inet_addr_type 
inetdev_by_index 
inetdev_lock 
inet_dgram_ops 
inet_family_ops 
inet_select_addr 
intr_count 
ip_cmsg_recv 
ip_finish_output 
ip_mc_dec_group 

ip_mc_inc_group 
ip_options_undo 
ip_route_input 
ip_route_output_key 
__ip_select_ident 
ipv4_config 
kerneld_send 
kfree_skb 
proc_net_inode_operations 
proc_register 
putname 
register_inetaddr_notifier 
skb_device_lock 
skb_device_locked 
skb_device_unlock 
sock_wspace 
tcp_set_keepalive 
unregister_inetaddr_notifier 
verify_area 
wake_up 
wake_up_interruptible 

Table 22: Unsolved file system variables / function calls 

Looking at the changes to the files between 2.0 and 2.4, some 2.4 files can easily be slimmed down.  
Multicasting support in igmp.c could be wrapped with conditional compile directives, and thus 
easily excluded.  But large files such as tcp_input.c have a lot of functionality that can't be easily 
removed. 

5.7 Network Tuning 
There are networking tuning parameters that can be adjusted (see linux/net/TUNABLE).  In the 
include/linux/netlink.h, MAX_LINKS is set to 32.  We lowered the value to 3 to see what 
additional memory footprint reduction was possible.  No useful memory reduction was measured. 

5.8 Target Device File System Image 
The awkward phrase “kernel file subsystem” used previously was referring to the kernel code 
implementation that supports the file system functionality.  In this section, we talk about the “target 
device file system image” when referring to the contents of the file system on the target device.  
The target device file system contains all executables and data except for the boot loader and the 
kernel itself. 

When examining ROM/flash footprint reduction, the Linux file system plays a unique role that 
doesn’t match historical approaches to software in embedded devices and doesn’t quite match the 
typical desktop PC view of a file system either. 

Historically, embedded device software was designed to control the device in a specific fixed 
manner.  The “application” software that provided the high level functionality for the device was 
statically linked with the operating system kernel and the resulting single executable was put in 
ROM, or more recently in flash.  When the device was turned on, the processor’s reset vector 
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pointed to the executable and that caused the single executable to run.  The software in most 
existing embedded devices has no concept of separate executables residing in a file system. 

On the other hand, the notion of a file system on a desktop PC is a place to store programs and data.  
When a user issues a command, either via the a command prompt input or GUI windowing 
manager invocation, the computer accesses the file system to get the information necessary to carry 
out the request. 

Embedded devices running Linux can use the notion of a file system in a very powerful way to 
reduce the size of the ROM/flash footprint.  This approach works because Linux uses a demand 
paging scheme via the processor’s memory management unit (MMU).  Demand paging works by 
only loading the first page of a program into memory and then transferring control to the program.  
As the program runs, it makes references outside the page or transfers control to code residing on a 
different page.  In either case, a page fault occurs when the MMU detects the page containing the 
requested information is not loaded.  The kernel handles the exception by loading the appropriate 
page (and configuring the MMU data structures approximately).  The program can then continue 
running.  This means the entire program can run without being completely loaded into RAM. 

Code in ROM/flash can either be executed- in-place (XIP) or copied into RAM and then executed.  
Obviously, copying the code into RAM can be time consuming and uses more RAM.  However, 
with today’s flash memory, code executes significantly faster out of RAM compared to flash.  A 
second advantage is the additional power savings by being able to run the code in less time, due to 
fewer wait states, and thus extending battery life. 

Linux brings a third advantage for executing code from RAM.  Demand paging means that each 
page that makes up the file system can be compressed as the flash image is being built.  When a 
page fault occurs, the exception handler locates the compressed page in the flash memory, 
decompresses into RAM, and then execution can continue as before.  The big savings using this 
approach is eliminating the long wait for an entire program to be decompressed before execution 
begins and anything stored in the file system can be compressed.  In Linux, CRAMFS supports this 
technology. 

A master of the file system to be compressed is traditionally made on the development workstation.  
CRAMFS uses the zlib compression library.  The mkcramfs tool compresses the master file system 
into a file, normally ending with .crm.  The boot loader, kernel, and compressed file system are 
then transferred into the target device’s flash memory.  The boot loader starts executing on power-
up, loads the kernel into RAM (which normally is uncompressed in the process).  Linux boots up 
and mounts the compressed file system.  At each page fault, the appropriate page image is 
decompressed before being loaded into RAM. 

The master version of the file system used by DSPLinux for the target hardware was created on the 
development workstation.  The du utility was used to see measure the master file system size. 

$ du –hs fs 
 

3.8M fs 

Listing 9: Uncompress file system image size 
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Running mkcramfs and checking the compress file system size can be done as follows: 

$ mkcramfs fs fs.crm 
$ ls -la fs.crm 
-rw-r--r--    1 stevej   users     1732608 Oct  2 12:49 fs.crm 

Listing 10: CRAMFS compress file system image size 

mkcramfs also provides a detailed output for each file.  The output is summarized, with files 
changed by less than 100 bytes excluded from the list (negative numbers means the file was 
compressed). 

Percentage 
Change 

Size 
Change 

(in bytes) 

File Name 

-42.64% -89736 busybox 
-49.45% -182220 tinylogin 
-64.68% -5340 hwerror.o 
-50.71% -44624 ld-2.1.3.so 
-59.51% -1928 libBrokenLocale-

2.1.3.so 
-58.50% -5368 libSegFault.so 
-54.18% -514388 libc-2.1.3.so 
-53.97% -10792 libcrypt-2.1.3.so 
-52.06% -142496 libdb-2.1.3.so 
-48.09% -26268 libdb1-2.1.3.so 
-59.36% -6200 libdl-2.1.3.so 
-49.46% -80820 libm-2.1.3.so 
-58.38% -50684 libnsl-2.1.3.so 
-53.64% -23368 libnss_compat-

2.1.3.so 
-64.49% -15572 libnss_db-2.1.3.so 
-52.55% -5980 libnss_dns-

2.1.3.so 
-60.93% -23384 libnss_files-

2.1.3.so 
-56.29% -7588 libnss_hesiod-

2.1.3.so 
-59.17% -24068 libnss_nis-2.1.3.so 
-59.98% -28132 libnss_nisplus-

2.1.3.so 
-72.71% -56804 libpthread-0.8.so 

Percentage 
Change 

Size 
Change 

(in bytes) 

File Name 

-52.06% -26556 libresolv-2.1.3.so 
-58.23% -7968 librt-2.1.3.so 
-63.21% -167020 libstdc++-3-

libc6.1-2-2.10.0.so 
-62.13% -10872 libthread_db-

1.0.so 
-58.11% -4600 libutil-2.1.3.so 
-54.97% -2373 ldd 
-50.32% -4448 ftpcount 
-64.03% -6687 xferstat 
-47.66% -31844 ftp 
-48.72% -86300 pgserver 
-53.60% -18154 libpgui.a 
-38.77% -233 libpgui.la 
-38.87% -234 libpgui.lai 
-49.76% -68432 xinetd 
-55.13% -24176 telnetd 
-52.16% -3964 ckconfig 
-51.38% -4244 ftprestart 
-52.84% -5912 ftpshut 
-51.35% -4952 privatepw 
-50.95% -93216 wu-ftpd 
-50.24% -27136 boa 
-55.49% -3915 boa.conf 
-54.56% -413 test-cgi 
-44.12% -379 mime.types 
-53.05% -226 linuxrc 

Table 23: CRAMFS detailed file size reduction 
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In summary, when execute- in-place performance issues exist, using CRAMFS can provide a 
significant reduction in the amount of ROM/flash required, as shown in the table below. 

Change Used Memory 
(Kbytes) 

Target device file system image starting 
Point 

3876 

mkcramfs compress file system image 1692 

Percentage savings 56% 

Table 24: CRAMFS file system image size reduction 

As mentioned previously, CRAMFS uses zlib (http://www.gzip.org/zlib/), a compression / 
decompression library whose compression algorithm is based on PKZIP.  The zlib library is a good 
general purpose compression algorithm.  However, the data in the file system is not general 
purpose data.  The majority of the files contain ARM executables.  Improved footprint and 
decompression performance can be obtained by substituting a compression algorithm tuned for the 
ARM instruction set.  Since the data is only compressed once and decompressed as needed by 
demand paging, the algorithm can be designed to favor ease of decompression over ease of 
compression.  This approach can give both ROM/flash footprint improvements as well as demand 
paging decompression performance improvements. 

5.9 Subsystem Replacement 
The majority of techniques for reducing the memory footprint listed above are straightforward 
approaches that most development engineers can apply when appropriate.  The advantage of the 
above approaches is they can often be applied to a newer version of the kernel without difficulty. 

Another approach is also possible.  If additional memory reduction is required, substituting 
replacement code for major subsystems can be considered. 

There are several significant disadvantages to replacing major subsystems.  First, it creates a fork in 
the code.  Improvements on the main source code branch are typically difficult to incorporate into 
the forked code.  Second, testing of the branched code is less encompassing since fewer people are 
using the branched code.  Third, supporting the branched code is problematic and typically 
expensive.  Fourth, gaining sufficient marketing momentum to make the branched code a 
commercially viable activity is difficult. 

When possible, it is most effective to develop improvements that not only meet specialized 
requirements, but better meet the desktop/server needs as well.  Such changes would have a better 
chance of being incorporated into the main code and thus avoid the problems associated with 
forked code. 

Each of the major subsystem is examined for anticipated savings based on using a code 
replacement strategy. 
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5.9.1 File System 
Linux supports a large number of host file formats by using an intermediary – the Virtual File 
System (VFS).  Linux 2.4.9 ships with support for around 25 host file formats.  If the embedded 
device requires only one host file format, the multi- layered file system can be replaced with 
something much simpler.  Devices that support removable media or need to execute out of RAM 
will likely need multiple host file formats, and thus will not be able to use this approach. 

Virtual File System

VFAT
...

ISO
9660Ext2

MS
DOS

 

Figure 3: Virtual File System Example 

Simplifying the file system to only support a since host file format is estimated to take 3 
engineering months of effort.  The memory footprint reduction is estimated to be 40 Kbytes RAM 
and 220 Kbytes flash/ROM.  In such a scenario, the possible risk is that applications that depend on 
the proc file system would not function.  Since most application that use the proc file system are 
utility applications, this limitation should be manageable. 

5.9.2 Module Support 
Many more I/O ports and peripherals exist than are supported on a single hardware platform.  To 
efficiently use memory, Linux can support device drivers for I/O ports and peripherals as loadable 
modules.  Since the hardware on an embedded device are known in advance and typically do not 
change, technically the entire module support code can be removed. 

However, any device drivers that are statically linked with the kernel will need to have the source 
code released under the terms of the GPL.  There are scenarios where the supplier of a device 
(whether as a discrete peripheral, as part of a SOC, or as part of licensed hardware IP) would prefer 
to implement a device driver and make it available without disclosing the source code, and loadable 
module approach allows such drivers to still be incorporated in a product.   

The Linux configuration system already supports building a kernel without module support.  The 
device would run marginally faster (due to the removal of one level of indirection).  The memory 
footprint reduction is estimated to be 37 Kbytes flash/ROM with the RAM requirements essentially 
unchanged.  Compatibility would not be compromised in this scenario. 
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5.9.3 Memory Manager 
Memory management is the largest subsystem within the Linux kernel.  The main components of 
the memory management subsystem, plus part of the glibc library that supports application memory 
management related functions, are shown below. 
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free_pages()

kmalloc()
kfree()

Physical

HW Paging
Entire linear address space is available

Available memory chopped into 4K page frames

Page
Allocator
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Minimize external fragmentation
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mm/slab.c
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mm/mmap.c
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Figure 4: Linux memory management components 

The page allocator and slab allocator can be replaced with a simpler memory management scheme 
if the embedded device is self-contained (i.e. no removable storage, no networking) and the 
applications are not very sophisticated.  However, under these conditions, a simpler operating 
system may be a better choice than Linux.  There are scenarios where a device (such as a lower-end 
in a family of devices that also run Linux) can benefit from the applications base of other family 
members of the device.  In this case, the following strategy applies. 

Replacing the page allocator and slab allocator is estimated to take 8 engineering months of effort.  
The device would run marginally faster (due to the removal of several layers of memory 
management).  The memory footprint reduction is expected to be 20 Kbytes RAM and 50 Kbytes 



Networked Multimedia Embedded Linux Case Study 

 Page 39  

flash/ROM.  Memory fragmentation issues with the replacement memory manager would need to 
be characterized. 

5.9.4 Networking 
Linux’s strength is networking.  Most new protocols are first deployed on Linux.  However, the 
advanced features supported by Linux increase the memory footprint.  Evidence for this was shown 
in the Networking section on page 31, where the memory footprint for the networking subsystem in 
uClinux 2.0 was compared to 2.4. 

Replacing the networking subsystem with an earlier version is estimated to take 4 engineering 
months of effort.  The memory footprint reduction is expected to be 50 Kbytes RAM and 200 
Kbytes flash/ROM.  Compatibility with the newer networking features, like those included in IPv6 
support, would be sacrificed.  (check into this…does kernel 2.4 include IPv6, or IPv4?  If IPv4, then 
what is sacrificed comparing this stack to an earlier one?  If IPv6, then the comment can stand as 
stated)  

5.9.5 Kernel 
The interesting features for embedded devices supported by the kernel are module support 
(described above) and the scheduler.  The scheduler is small (6K ROM/flash, 7K statically 
allocated RAM), so changing the scheduler will not make significant reduction in memory 
footprint.  However, the time-sharing scheduling policy supported by Linux is complex and can 
lead to poor embedded process-switch characteristics.  Several replacement scheduling policies are 
available that may be better suited to embedded devices with soft real- time requirements.  
However, since this case study focuses on memory footprint reduction, replacement scheduling 
policies was not investigated. 

5.9.6 Interprocess Communication 
Interprocess communication (IPC) is the smallest Linux subsystem.  The kernel configuration 
system already supports building a kernel with most of the IPC code removed.  Full Linux IPC 
(with System V IPC support) is around 28K ROM/flash.  Excluding System V IPC support reduces 
ROM/flash requirements to less than 1K. 

5.9.7 The glibc Library 
The biggest opportunity to reduce the memory footprint requirements by making implementation 
changes lies with the glibc library.  The case study glibc library requires 870K ROM/flash and 
138K RAM. 

Various proposals have been made for run-time library alternatives to glibc for use in embedded 
devices based on Linux.  Primarily, these are variants of POSIX 1004.1, however, they are 
identified in specification form rather than an actual implementation.  According to the Embedded 
Linux Consortium, Red Hat had made a proposal in mid 2001 to provide such an implementation 
based on their EL/IX “level 3” spec, and to make its implementation available for all developers 
under an open source licensing model.  However, they included a requirement to retain copyright 
and ownership on the library.  As such, the proposal was rejected by the ELC and the offer was 
withdrawn.  Its implementation was suspected to be based upon newlib with enhancements to 
support pthreads and to be made thread-safe. 
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Creating an embedded version of glibc is a very large task.  For such an engineering effort to be 
successful, it would likely have to be done by a company experienced in generating open source 
code.  The effort would cost at least $750K and take 6-9 months for an open source embedded 
version compatible with glibc to be developed and tested.  The embedded version would require 
around 250K ROM/flash (saving around 620K) and 75K RAM (saving 63K).  Likewise, for such 
an effort to be commercially successful, it would also have to have a self-sustaining business 
model.  We have suggestions for creating such a successful model that includes best practices on 
the commercial side as well as engineering side. 
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6 glibc Improvements 
The traditional Linux C library, called glibc (http://www.gnu.org/software/libc/libc.html), is 
developed by the GNU community. The glibc library connects applications with the kernel system 
calls and also supports many commonly used C-language functions.  For the case study, glibc is a 
shared library – only one copy of glibc is needed to service all the applications.  However, glibc is 
also very large, as shown in the table below (based on the dec file from the size command). 

Version libc Linux kernel (compressed) 
x86 development workstation 
running Linux 2.4.2 with libc 
2.2.2 

1247697 793965 

Case study starting point 923453 488360 

Table 25: libc size comparison 

Many of the techniques show in the case study can be applied to glibc to reduce its RAM and 
ROM/flash memory footprint.  In addition to those approaches, several approaches unique to 
libraries are possible, as described in the following sections. 

6.1 Alternate C Libraries 
The glibc library, like many other components used with Linux, is targeted to and most utilitized on 
the desktop and server environments.  As can be seen in Table 25, glibc is a large library.  Several 
other C libraries are available, including newlib, uClibc, and diet libc. 

6.1.1 newlib C Library 
The newlib library is a C library intended for embedded system use and is typically distributed by 
Cygnus/Red Hat as the target library with its commercial GNU tool chains.  It is a conglomeration 
of several library parts that make them easily usable on embedded products.  However, newlib is 
not thread-safe, and as such, will not support various glibc features such as reentrancy.  
Additionally, it does not support pthreads, which is a pre-requisite when attempting to use the 
“gdbserver” program (a useful utility for application- level debugging).  It is delivered in source and 
binary form from various commercial sources, and available in source form on the web. the newlib 
library has been compiled and stabilized for a wide array of target processors, and will usually 
work on any architecture with the addition of a few low-level routines. 

Starting with the newlib sources, we attempted to build an ARM9 library.  The newlib library uses 
a configure script to determine system dependent variable values.  Given that newlib is designed for 
use in embedded systems, it is odd that the build environment is not cross development friendly.  
We were unable to build newlib for an ARM9 processor in the time available. 

6.1.2 uClibc C Library 
uClibc is a C library for embedded systems and is typically used with uClinux.  It is an active 
development project and we use uClibc in our ARM7 solutions.  uClibc RAM and ROM/flash 
memory size information is provided in various places throughout this case study. 
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6.1.3 Diet libc C Library 
The diet libc is a C library optimized for small size. Diet libc can be used to create small statically 
linked binaries for Linux on a variety of processors including ARM9.  Since the case study doesn’t 
statically link applications to the libraries (it uses shared libraries), memory footprint analysis on 
diet libc was not performed.  However, it may be a very viable option where static linking is 
employed.  Also, Diet libc license is GPL – therefore, statically linking to Diet libc requires the 
resulting code to also have a GPL license. 

6.2 Removing Unused Library Functions 
Because of the nature of shared libraries, the functions in the library are included even when they 
may not be used by any of the applications.  Some embedded devices ship with a fixed set of 
applications; new applications cannot be added.  In these fixed capability devices, unused library 
functions increase the memory footprint without adding any value.  Various library compression 
tools are available to strip unused functions out of shared libraries to reduce their memory footprint. 

One such open source tool is the Library Optimizer (http://sourceforge.net/projects/libraryopt/).  
The Library Optimizer tool rebuilds shared libraries to contain only the object files needed to 
provide symbols required by executables and shared libraries in a given directory tree. It can be 
used to reduce file system sizes for embedded systems.  Library Optimizer is used as a replacement 
process for the last step in library creation where the parts that comprise the library are actually 
linked together.  Library Optimizer builds a list of dependencies so only those functions with a 
dependency on the applications to be used are included in the build process. 

The Library Optimizer was used to optimized libc version 2.1.3 from the GNU glibc suite of 
libraries for the case study set of applications.  During development, we use a version of the libc 
library that contains symbols used for debugging.  A smaller version of the libc library can be 
created using the strip utility which simply removes sections containing debugging symbol 
information.  The stripped version still contains the full set of functions and data structures.  The 
first two entries in Table 26 show the full libc library with and without symbols. 

To determine the maximum libc optimization possible using tools like Library Optimizer, the libc 
library was optimized to contain only those functions required to make the following program 
runnable. 

void main( void ) { } 

Figure 5: Program simplest.c used for maximum libc library optimization 

Notice the program, named simplest.c, appears to be completely empty.  However, we can 
interrogate the compiled version, a.out, to determine the list of unresolved externals: 

$ arm-linux-objdump -T a.out 
a.out:     file format elf32-littlearm 
DYNAMIC SYMBOL TABLE: 
02000230      DF *UND* 00000220  GLIBC_2.0   abort 
02000240      DF *UND* 00000198  GLIBC_2.0   __libc_start_main 
02000380 g    DO .rodata 00000004  Base        _IO_stdin_used 

Figure 6: List of unresolved externals in compiled version of simplest.c 
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Even though simplest.c appears to be empty, the abort() and __libc_start_main() functions 
are called and the __iostdio_used data structure is accessed.  When using Linux shared libraries, 
an ELF shared library program interpreter library is required, called ld-linux.so.2 for our 
example.  Running Library Optimizer on the libc library on a file system that contains the complied 
version of simplest.c and ld-linux.so.2 created an optimized libc library.  The optimized 
library required 173 separate object files.  Generally, each file in the glibc source contains one 
function.  Therefore, to completely resolve all externals required by simplest.c, ld-linux.so.2 
and the functions / data structures used in the libc library requires around 173 libc functions.  These 
functions include most of the common file system functions (open, read, write, …), string functions 
(strcpy, strlen, …), memory copy functions (memcpy, memset, …).  These functions are required 
because every program has a standard in, standard out, and standard error file handles, plus 
associated functions called by the related file system functions.   The size of the minimum libc is 
also shown in Table 26. 

Library Optimizer was again run on the case study target file system image, with the results shown 
below. 

Change Code 
(text) 

Initialized 
data 

(data) 

Uninitialized 
data 
(bss) 

Total 
(dec) 

File Size 

libc with symbols 890253 19028 14168 923449 3863993 

libc with symbols stripped  890253 19028 14168 923449 949480 

Minimal libc 219037 7660 3328 230025 234564 

libc to support a GUI, MP3 player 
and a web browser 537911 14032 9220 561163 571576 

Percentage savings for GUI, MP3 
player, web browser build 40% 26% 35% 39%  

Table 26: Library Optimizer results 

For the past 20 years, microprocessor code in embedded devices has largely been fixed at the 
factory with no ability to enhance the device’s capabilities by adding or replacing software.  
Limited, expensive and poor connectivity made adding software difficult.  In addition, the software 
infrastructure in a device to support software downloads is complicated. 

With cheap memory and a powerful operating system like Linux, the rules have been changed.  
Linux supports the concepts needed for software download and execution.  The software for 
embedded devices can be viewed as multiple applications able to dynamic link to the underlying 
system (the C library and any other libraries). 
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If an embedded device supports software download capabilities, what happens if the shared 
libraries were optimized by removing functions not used by the base set of applications?  There are 
several possibilities listed in the following table. 

Case Implication 
Necessary functions are 
available 

A new application can be run properly if the application limits the 
use of system calls to the reduced set supported in the embedded 
device.  Using this approach requires careful understanding of which 
functions were discarded and building and testing the new 
application in an environment containing libraries with a similar 
function set.  Managing new application development to a non-
standard set of functions requires effort in areas that are not valued 
by the customer. 

Application builds 
missing functions into 
the application 

The application can include the missing functions.  This statically 
links the application to the missing functions.  If another new 
application needs one of the missing functions, it will have to also 
statically link in the function even if another application has the 
same statically linked function.  Flash memory is not utilized 
optimally when several new applications support the same statically 
linked functions.  However, the inefficiency is typically small if the 
majority of the embedded devices are not enhanced or upgraded 
(which is a common scenario).  This approach creates  difficulties 
with managing and integrating the missing functions. 

Replace the functionally 
reduced C library 

A simple approach is include the full C library as part of the new 
application download process.  Using this approach appears to 
negate the advantage in not shipping the full C library in the first 
place.  However, if the new application requires additional storage to 
be added to the device (like compact flash, SmartMedia, etc), then 
the base device has a small memory footprint fitting into the base 
memory with additional applications requiring additional memory be 
installed. 

Table 27: New applications working with a functionally reduced library 

The focus has been on removing unused C library functions.  However, this approach may be even 
more valuable removing functions from more specialized libraries.  GStreamer uses the GObject 
library.  Library Optimizer can be used to remove GObject functions not required by GStreamer.  It 
is unlikely other applications will also use GObject, so the missing functions may not be an issue. 

At first it appears that removing unused library functions required for just one application could be 
accomplished by statically linking the application to the library.  Technically this is true.  However, 
the code license, like LGPL, may have different requirements based on static versus dynamic 
linking. 
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7 Audio Playback Performance Analysis 
The load on the ARM9 was measured with the ARM9 performing the MP3 decode and the results 
were compared with the ARM9 load when the DSP was performing the MP3 decode.  The load was 
measured using a Lauterbach Trace32 JTAG debugger performance tool with the Linux kernel and 
the file system loaded into RAM.  A different performance model would be captured if the kernel 
and the file system were loaded into flash memory, but the relative CPU utilization difference 
related to MP3 decoding would be similar. 

The MP3 software chosen to run on the ARM CPU, mpg123, was originally written for x86 desktop 
hardware, requiring a minimum of a 486 running at 120Mhz.  When executed on the ARM CPU in 
the EVM at 60 Mhz, the algorithm couldn’t keep up with audio playback.  Steps that could be taken 
to get the ARM CPU based MP3 decoder running at speed include: 

• Using an MP3 decoder algorithm tuned for the OMAP hardware, paying careful attention to 
when data cache misses occur 

• Run the ARM CPU in the OMAP 1510 at a higher clock rate (it is designed to run up to 175 
Mhz – the EVM speed is 60 Mhz) 

• Use the 192Kbyte SRAM internal to the OMAP 1510 instead of the slower off-board 
SDRAM. 

The ARM CPU in the OMAP 1510 is easily capable of decoding MP3 at speed.  Since the goal of 
the case study demo is to show how much easier it is to process real time streams using a DSP, no 
effort was expended optimizing the ARM based MP3 decoder. 

7.1 ARM Idle CPU Utilization 
A screen snapshot for Linux running on the OMAP 1510EVM sitting idle is show below.  Notice 
51.1% of the time the CPU is in the arch_idle function and 48.7% of the time the CPU is in the 
cpu_idle function. 

 

Figure 7: ARM CPU utilization when idle 
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7.2 ARM MP3 Playback CPU Utilization 
Several MP3 decoders were tested.  MAD, the MP3 decoder used with GStreamer in the demo 
software was tested, along with MPG123.  At the time these performance tests were conducted, the 
MPG123 decoder had better performance characteristics, so MPG123 was used.  Since the 1510 
has a DSP that can be used for MP3 decoding, no effort was spent trying to optimize the ARM9 
based MAD or MPG123 decoders. 

The MP3 decoder operates in two stages.  In the first stage, large collections of constants are 
generated.  These constants are generated using floating point math implemented in software.  The 
CPU utilization for the mpg123 constant generation stage, based on the ARM9 running at 60 Mhz, 
is shown in the following table. 

Linux Kernel Routine Percentage CPU 
Utilization 

mpg123 13.8 
float64_mul 13.5 
DoubleCPD0 12.0 
roundAndPackFloat64 10.9 
EmulateAll 8.5 
EmulateCPD0 7.2 
subFloat64Sigs 4.3 
addFloat64Sigs 4.2 
PerformLDF 4.1 
checkCondition 2.6 
SetRoundingMode 2.2 
PerformSTF 1.8 
normalizeRoundAndPackFloat64 1.7 
EmulateCPDT 1.6 
float64_sub 1.3 
getDestinationSize 1.3 
float64_add 1.0 

Table 28: CPU utilization for MPG123 constant generation 

The mpg123 program utilized 13.8% of the ARM CPU during the constant generation stage.  
Essentially the rest of the time the ARM CPU was executing floating point math operations for 
mpg123. 
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After completing the generation of the required constants, the mpg123 decoder starts converted the 
MP3 data into PCM data.  The MP3 decode CPU utilization, again based on the ARM9 running at 
60 Mhz, is shown below. 

Linux Kernel Routine Percentage CPU 
Utilization 

mpg123 98.5 
timer_bh 0.3 
__wake_up 0.2 
schedule 0.2 
Update_wall_clock 0.1 

Table 29: CPU utilization for MPG123 MP3 decoder 

For 98.5% of the time, the ARM CPU executed functions in the mpg123 program.  The mpg123 
program only used integer math operations during decode, so we don’t see any calls to the floating 
point functions.  If an ARM9 optimized version of mpg123 program was used, we would also see 
some CPU time spend in the idle routines.  The unoptimized version could not meet the required 
output rate necessary for acceptable quality audio due to pauses caused by the mpg123 program 
requiring more procession power than available. 

7.3 C55 DSP MP3 Playback CPU Utilization 
The same MP3 file was decoded using an Imagine Technologies C55 MP3 decoder on the C55xx 
DSP core.  The Lauterbach performance monitoring tool was again used to monitor the ARM9.  No 
performance monitoring was done on the DSP.  The ARM CPU utilization is shown below. 

Linux Kernel Routine Percentage CPU 
Utilization 

cpu_idle 50.2 
arch_idle 45.6 
TaskBridge 0.3 
do_generic_file_read 0.1 
do_IRQ 0.1 
fixup_irq 0.1 
schedule 0.1 
omap1510_leds_event 0.1 
file_read_action 0.1 

Table 30: CPU utilization for Imagine Technologies C55 MP3 DSP decoder 

The vast major of the time the CPU is idle when the decoding is done by the DSP.  There is some 
CPU time required by the TaskBridge program feeding the DSP algorithm (0.3%), plus some time 
in the file system retrieving the MP3 file (do_generic_file_read at 0.1% and 
file_read_action at 0.1%). 
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The DSP MP3 decoding load was not directly measured.  The Imagine Technology MP3 decoder 
algorithm specifications are provided below: 

Program Memory (k word) < 16k 
Data Memory (k word) < 7.5k 
Processor Loading (MIPS) < 35 

Table 31:Imagine Technology C55 MP3 Decoder Specifications 

Although the numbers show the advantage of using a DSP, there is another advantage that is 
apparent when using the demo code running on the OMAP 1510 EVM.  We observe this when we 
begin playing an MP3 file using the ARM and simultaneously browsing the web.  Most prominent 
is the increase in the playback delay.  Repeating this procedure using the DSP to execute the MP3 
decode, we notice that the browsing performance is improved with no degradation in audio quality. 
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8 Summary 
In review of the quantitative data of code size reductions illustrated above, there are some notable 
results that we see, some of which were anticipated, and some of which were a surprise.  
Additionally, insight drawn during the process of collecting this information leads us to make some 
conclusions and assertions for the best strategy for system optimizations when assembling software 
components for the creation of an embedded device. 

The greatest reductions, as expected, were in excluding Linux capabilities that are obviously 
unnecessary in a non-server application.  These are effectively “systematic” changes that can 
managed when basing an embedded design on a commercially derived distribution.  The resulting 
difference in functionality would effectively eliminate attempts by the program to perform certain 
tasks or allow for certain conditions that are not applicable to an embedded device.  Examples of 
such are as follows: 

• Reductions from xconfig modifications:  16% nominally from gross removal of non-
embedded components. 

• Modifications to the users the kernel memory allocator: tightening of core and fs calls to 
kalloc() and kfree() to improve execution time, but may result in minimal improvement 
in code size. 

• Disable kernel swap daemon: reduction by 528K bytes.  Big savings in RAM. 
• RAM reductions from Static Buffer changes: approx 50% 
• Program size reduction from file system changes: approx 25%. 

As a result of these reductions, there can be a reasonable reduction in hardware resources (primarily 
RAM and ROM/flash) allowing a device to reach a new threshold in functionality vs. cost. 

Some of the code reduction opportunities that were pursued that did not result in significant code 
reduction were in the following categories: 

• Compiling for minimum GStreamer code size: approx 3% 

Making such changes may not result in significant size savings, but may still be pursued for the 
sake of final system optimizing and tuning. 

Additionally, there were some “non-systematic” approaches to kernel size reductions that include 
the risk of fragmentation or imposing modifications that do not also translate into modifications 
that are welcome by the core user base of the Linux operating system (namely, in servers and IA32 
architecture workstations). Some of the approaches considered could result in large code reduction, 
but at the expense of significant engineering effort and potential quality issues.  These options 
include: 

• Replacing the Linux 2.4 kernel file subsystem with the one from Linux 2.0 
• Replacing the Linux 2.4 networking subsystem with the one from uClinux 2.4 
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One of the more controversial areas of potential code size reductions is in the area of run-time 
library optimizations.  Due to the prevalence of glibc as the defining API for the Linux workstation 
and server platform, changes away from the use of glibc are feared to pose a fragmentation threat to 
various embedded Linux systems.  The real risk of fragmentation is primarily an issue in case there 
is a single prevailing API in embedded systems (as in the x86 in the desktop), and less of an issue 
due to the wide number of embedded CPU architectures.  The best strategy for binary application 
re-use is to utilize a higher- level language such as Java.  This would allow for a replacement library 
for glibc provided that it implements sufficient systems resources to provide dynamic linking of a 
predominant share of Linux applications that are applicable to embedded devices, including a Java 
VM.  However, the size of the higher-level language may negate the savings in using a C library 
smaller than glibc. 

Due to insufficient business motivation, the implementation of a lower-profile alternative to glibc 
that would have the equivalent popularity in the embedded market has not taken root.  A successful 
implementation would require a self- funding business model (to justify an investment), open source 
licensing (to encourage a critical mass of adoption), and potentially, a single or pair of sponsoring 
entities (to serve as industry leaders in defining a de facto standard).    

The following table summarizes various memory footprint optimizations. 

Approach Description 
gcc – compiler 
optimization 

Use the built- in compiler code size optimization features.  Take careful 
measurements, as the optimizations may not be pronounced for processors 
used in embedded devices.  Track the increase in execution time and RAM 
requirements. 

xconfig – remove 
unnecessary 
features 

Understanding which Linux features are required in an embedded device 
and excluding all other features is the easiest, fastest, and more reliable 
way to reduce the memory footprint. 

Library Optimizer 
– remove 
unnecessary library 
functions 

If a significant number of specialty libraries are required, removing all 
unused functions in those libraries will reduce the memory requirements.  
If new applications can be loaded, removing library functions can create 
compatibility problems.  Solving these problems usually entails including 
the needed functions with the new application (which can have licensing 
implications) or including a full version of the library with the application. 

Older kernel New features are added to each new version of the Linux kernel.  
Generally, the kernel grows as a result.  Embedded devices may not 
require all the latest features.  Using an older kernel, with patches for the 
known defects, will likely be a memory saving approach.  Be careful to 
understand the limitations of the chosen kernel. 

Older kernel 
subsystem 

An older version of a kernel subsystem can be used in place of the version 
in the embedded device kernel.  Since the interfaces between kernel 
subsystems chance in unpredictable ways as new kernels are released, 
using an older version of a subsystem can be very difficult.  The memory 
savings advantage is likely to be outweighed by the effort involved with 
getting the older version working correctly with a newer kernel. 

cramfs – file 
system image 

When performance or power issues don’t allow execute- in-place, 
compressing the kernel and the file system is an easy way to reduce the 
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Approach Description 
compression ROM/flash memory footprint.  Monitor the performance carefully; 

especially application load times. 
Statically link 
entire code, remove 
file system 

The predominant approach to embedded software is to create one large 
executable file.  This approach is obviously not very flexible for 
enhancements once a product shipped.  However, if the embedded device 
will not require field upgrades, linking the entire code set into one 
executable will reduce the memory footprint.  Be careful to understand the 
license for each code set included in the final link. 

Header file tuning 
parameters 

Many of the kernel header files contain tuning parameters.  Once the 
embedded device is operating reliably, adjusting the tuning parameters 
may improve performance or reduce memory requirements. 

Static buffer / array 
analysis 

Using the size, nm, or objdump utilities, the statically allocated memory 
requirements can be monitored.  Identifying the largest static memory 
users is easy, giving the developer hints on where to start looking when 
tuning RAM memory usage. 

Dynamic memory 
analysis 

The proc file system allows the dynamic memory usage to be monitored.  
The proc file system can even be enhanced to provide different views of 
who is using memory and in what way.  Large dynamic memory users can 
then be examined to see what options exist to reduce usage. 

Table 32: Memory footprint reduction options summary 
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9 Appendix A - Software Documentation 
 

9.1 Linux Utility Commands 
The information used to document the Linux utility commands used in this case study is from the 
Linux man pages and the Linux info system. 

9.1.1 dmesg 
Prints or controls the kernel ring buffer.  The kernel ring buffer contains the end of the various 
kernel generated diagnostic messages. 

9.1.2 du 
du reports the amount of disk space used by the specified files and/or directories.  Normally the 
disk space is printed in units of 1024 bytes. 

9.1.3 nm 
A The symbol's value is absolute, and will not be changed by further linking. 

B The symbol is in the uninitialized data section (known as BSS). 

C The symbol is common. Common symbols are uninitialized data. When linking, multiple 
common symbols may appear with the same name. If the symbol is defined anywhere, 
the common symbols are treated as undefined references. For more details on common 
symbols, see the discussion of -warn-common in *Note Linker options: (ld.info)Options. 

D The symbol is in the initialized data section. 

G The symbol is in an initialized data section for small objects. Some object file formats 
permit more efficient access to small data objects, such as a global int variable as 
opposed to a large global array. 

I The symbol is an indirect reference to another symbol. This is a GNU extension to the 
a.out object file format which is rarely used. 

N The symbol is a debugging symbol. 

R The symbol is in a read only data section. 

S The symbol is in an uninitialized data section for small objects. 

T The symbol is in the text (code) section. 

U The symbol is undefined. 

V The symbol is a weak object. When a weak defined symbol is linked with a normal 
defined symbol, the normal defined symbol is used with no error. When a weak 
undefined symbol is linked and the symbol is not defined, the value of the weak symbol 
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becomes zero with no error. 

W The symbol is a weak symbol that has not been specifically tagged as a weak object 
symbol. When a weak defined symbol is linked with a normal defined symbol, the 
normal defined symbol is used with no error. When a weak undefined symbol is linked 
and the symbol is not defined, the value of the weak symbol becomes zero with no error. 

9.1.4 size 
size lists the section sizes--and the total size--for each of the object or archive.  The output is a 
table, one row for each file, and the columns described in the following table. 

Column 
Title 

Meaning 

text  The symbol is in the text (code) section. 

data The symbol is in the initialized data section. 

bss The symbol is in the uninitialized data section (known as BSS). 

dec The total of text, data, and bss, expressed in decimal format. 

hex The total of text, data, and bss, expressed in hexadecimal format. 

filename The name of the file 
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10 Appendix B - GStreamer Documentation 
From the application programmer’s point-of-view, GStreamer consists of a small set of objects, as 
shown in Figure 8.  Each object is described below. 

GstPipeline

Gst
Buffer

GstElement

GstPad

Gst
Buffer

GstElement

GstPad

GstElement

GstPad

GstScheduler

 

Figure 8: GStreamer Example Pipeline 

10.1 GstElement 
GstElement is the fundamental object of a pipeline.  It contains information about the external 
connections, parentage, and the internal functions necessary for the element to do its job.  Parentage 
is handled by the parent pointer in the base GstObject.   External connections are handled as a list 
of GstPads.  Function pointers keep track of the necessary internal routines. 

Each element has a current and pending state, which is one of NULL, READY, PAUSED, or 
PLAYING.  This state is used to determine whether the element should, for instance, have the 
source file open or not.  The higher- level scheduler is responsible for actually running the plugin in 
the PLAYING state, so the plugin isn’t responsible for determining when to run. 

gst_element_add_pad(GstElement *element, GstPad *); 
gst_element_remove_pad(GstElement *element, GstPad *); 
 Add pads to an element or remove them. 

GstPad *gst_element_get_pad(GstElement *element, gchar *padname); 
 Retrieve a pad from the element by name.  

gst_element_set_state(GstElement *element, GstElementState state); 

 Attempt to set the state of the element.  

gst_element_connect(GstElement *srcelement, gchar *srcpadname, 
   GstElement *sinkelement, gchar *sinkpadname); 
 Convenience function to connect two pads from different elements by name. 

10.2 GstPad 
A pad is a connection point for an element.  Pads are either source or sink pads, and pads can only 
connect with pads of the opposite type.  Data always flows from a source pad to a sink pad. 
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The pad optionally (depending on the operating mode of the element) contains function pointers to 
the routines that will do the processing work for the element, as well as function pointers the 
scheduler uses to plan out the execution sequence. 

gst_pad_set_<*>_function(GstPad *pad GstPad<*>Function *<*>); 
 Set the <*> function for the pad, 
 <*> can be one of chain, get, event, negotiate, newcaps, or bufferpool. 

gst_pad_connect(GstPad *srcpad, GstPad *sinkpad); 
 Connect two pads together.  

10.3 GstBin 
A bin is a special case of a GstElement that contains other elements.  The default bin is nothing but 
a simple container, but there are other bins with various features, such as GstThread, which puts its 
children into a separate pthread.  Functions are provided to manage adding and removing 
elements. 

gst_bin_add(GstBin *bin, GstElement *element); 
gst_bin_remove(GstBin *bin, GstElement *element); 
 Add elements to a bin or remove them.  

gst_bin_iterate(GstBin *bin); 

 Force execution of all the elements in the bin (if it has a scheduler). 

10.4 GstScheduler 
Certain types of bins (like GstPipeline and GstThread) have an associated scheduler that plans 
for the execution of the elements under its control.   It uses function pointers located in the 
elements and pads to implement the plan. 

All the scheduler methods are private to the core library, and only need to be used when writing a 
new scheduler. 

10.5 GstBuffer 
The heart of GStreamer's media-handling is the GstBuffer.  It has a pointer to a memory region, as 
well as metadata such as the size, offset, and timestamp of the buffer.  They also have reference 
counts and locks to ensure correctness. 

Buffers can be children of other buffers, with their data pointer residing within the memory region 
of the parent buffer.  The parent is not freed until all the children are freed. 

Buffers can be merged together, either by creating a copy of the data, or if the buffers are 
contiguous with the same parent buffer, a new child of that parent can be create to span the buffers.  
Combined with elements that are written to optimize for this, almost total zero-copy can be 
achieved. 

Buffer pools allow for the creation and management of specialized buffers, such as audio or video 
DMA buffers.  These buffer pools can be acquired from further downstream in the pipeline to avoid 
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copies (i.e. decoded video can be written directly to frame buffer memory even through intervening 
filters). 

Copy-on-write will be implemented at some point in the near future, to ensure that branched 
pipelines will not cause elements to simultaneously rewrite the same buffer. 

GstBuffer *gst_buffer_new(); 
 Create a new buffer with no pointers or metadata. 

GstBuffer *gst_buffer_new_from_pool(GstBufferPool *pool, int offset, int  size); 
 Create a new buffer with a data pointer and metadata from a buffer pool.  

gst_buffer_ref(GstBuffer *buf); gst_buffer_unref(GstBuffer *buf); 
 Handle reference counting. 

GstBuffer *gst_buffer_create_sub(GstBuffer *buf, int offset, int size); 
 Create a child buffer from the middle of a parent buffer.  

GstBuffer *gst_buffer_span(GstBuffer *buf1, int offset, GstBuffer *buf2, 
    int size); 
 Create a new buffer that spans the data areas of buf1 and buf2. 
 A child  buffer of a shared parent will be created if possible, otherwise data is  copied.  

10.6 GstCaps/GstProps 
All pads have GstCaps capabilities associated with them, which describes the data expected or 
produced on that pad.  The properties consist of a list of tag/type/value tuples, describing such 
things as bit rate, width/height, color format, etc.  A GstCaps structure associates a list of these lists 
with a MIME type, and these structures form a list.  When attached to a GstPad, they provide a 
means of verifying that the data types are compatible, as well as working out a common format. 

When pads are connected, they engage in a negotiation process where common ground is found.  A 
default is provided that simply looks at the capabilities template provided by the plugin, but the 
element can provide an override function for each pad to negotiate in a more intelligent manner. 

Most of the capabilities handling in code is done using constructor macros, but code must also be 
able to create and inspect capability live, in order to do negotiation at connect time: 

void gst_caps_set_props(GstCaps *caps, GstProps *props); 
GstProps *gst_caps_get_props(GstCaps *caps); 
 Set and retrieve the properties pointer of a GstCaps object. 

void gst_caps_set(GstCaps *caps, gchar name, arg...); 
 Set properties in a GstCaps. 

gst_caps_get_<*>(GstCaps *caps, gchar name); 
 Retrieve a specific type of  property from the caps by name.  
 <*> can be one of int, float, fourcc, boolean, or string. 
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10.7 GstPlugin 
A plug- in is a single shared library that contains a collection of plug- ins and other loadable objects.  
A GstPluginFeature can be a GstElementFactory (used to create instances of elements), or a 
GstType, which is an abstraction which helps to manage basic media types.  Plug- ins can be found 
via any of several methods, including a system-wide XML registry, searching the a path, and 
absolute path loading. 

When a plug- in is loaded, a GstPluginDesc structure is searched by the name plugin_desc, which 
provides the version of GStreamer the plug- in was built against, the name, and the initialization 
function, which is called immediately. 

gst_plugin_add_feature(GstPlugin *plugin, GstPluginFeature *feature); 
 Add a plug- in feature to the list in the plug- in. 
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11 Appendix C - Case Study Starting 
Configuration 

The .config file in the case study source code Linux subdirectory lists which options are included / 
excluded.  The case study .config file lines which include functionality are listed below.  The 
xconfig Linux kernel configuration tool can be used to change the .config file (as explained in the 
xconfig – Feature Inclusion Configuration Tool section). 

# Automatically generated make 
# config: don't edit 
# Edited – all lines with “is not 
# set” have been removed, 
# as well as blank lines. 
CONFIG_ARM=y 
CONFIG_UID16=y 
# 
# Code maturity level options 
# 
CONFIG_EXPERIMENTAL=y 
# 
# Loadable module support 
# 
CONFIG_MODULES=y 
# 
# System Type 
# 
CONFIG_ARCH_OMAP=y 
# 
# TI OMAP Implementations 
# 
CONFIG_ARCH_OMAP1510=y 
CONFIG_CPU_32=y 
# 
# Processor Type 
# 
CONFIG_CPU_32v4=y 
CONFIG_CPU_ARM925=y 
CONFIG_NET=y 
CONFIG_CPU_ARM925_CPU_IDLE=y 
CONFIG_CPU_ARM925_I_CACHE_ON=y 
# 
# General setup 
# 
CONFIG_NET=y 
CONFIG_NWFPE=y 
CONFIG_KCORE_ELF=y 
CONFIG_BINFMT_ELF=y 
CONFIG_LEDS=y 
CONFIG_LEDS_TIMER=y 
CONFIG_LEDS_CPU=y 
# 
# TI ARM925 CPU CONFIG 
# 

CONFIG_CPU_ARM925_NON_STREAMING_ON=y 
# 
# OMAP1510 Support 
# 
CONFIG_DSPLINUX_OMAP1510_SERIAL=y 
CONFIG_DSPLINUX_OMAP1510_SERIAL_CONSO
LE=y 
CONFIG_DSPLINUX_OMAP1510_HWERROR=m 
# 
# Input core support 
# 
CONFIG_INPUT=y 
CONFIG_INPUT_KEYBDEV=y 
CONFIG_DSPLINUX=y 
# 
# Memory Technology Devices (MTD) 
# 
CONFIG_MTD=y 
# 
# MTD drivers for mapped chips 
# 
CONFIG_MTD_CFI=y 
CONFIG_MTD_CFI_INTELEXT=y 
# 
# User modules and translation layers 
for MTD devices 
# 
CONFIG_MTD_BLOCK=y 
# 
# Block devices 
# 
CONFIG_BLK_DEV_RAM=y 
CONFIG_BLK_DEV_RAM_SIZE=4096 
CONFIG_BLK_DEV_INITRD=y 
# 
# Networking options 
# 
CONFIG_UNIX=y 
CONFIG_INET=y 
CONFIG_IP_PNP=y 
CONFIG_IP_PNP_BOOTP=y 
CONFIG_IP_PNP_RARP=y 
# 
# Network device support 
# 
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CONFIG_NETDEVICES=y 
# 
# Ethernet (10 or 100Mbit) 
# 
CONFIG_NET_ETHERNET=y 
# 
# Character devices 
# 
CONFIG_VT=y 
CONFIG_VT_CONSOLE=y 
# 
# File systems 
# 
CONFIG_ISO9660_FS=y 
CONFIG_JOLIET=y 
CONFIG_PROC_FS=y 
CONFIG_DEVFS_FS=y 
CONFIG_EXT2_FS=y 
# 
# Network File Systems 
# 
CONFIG_NFS_FS=y 
CONFIG_NFS_V3=y 
CONFIG_ROOT_NFS=y 
CONFIG_SUNRPC=y 
CONFIG_LOCKD=y 
CONFIG_LOCKD_V4=y 
# 
# Partition Types 
# 
CONFIG_MSDOS_PARTITION=y 
CONFIG_NLS=y 
# 

# Native Language Support 
# 
CONFIG_NLS_DEFAULT="iso8859-1" 
CONFIG_NLS_CODEPAGE_437=y 
CONFIG_NLS_CODEPAGE_850=y 
CONFIG_NLS_ISO8859_1=y 
# 
# Console drivers 
# 
CONFIG_FB=y 
# 
# Frame-buffer support 
# 
CONFIG_FB=y 
CONFIG_DUMMY_CONSOLE=y 
CONFIG_FBCON_FONTS=y 
CONFIG_FONT_8x8=y 
CONFIG_FONT_ACORN_8x8=y 
# 
# Input core support 
# 
CONFIG_INPUT=y 
CONFIG_INPUT_KEYBDEV=y 
# 
# Kernel hacking 
# 
CONFIG_FRAME_POINTER=y 
CONFIG_DEBUG_ERRORS=y 
CONFIG_DEBUG_USER=y 
CONFIG_DEBUG_LL=y 
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12 Acknowledgements 
12.1 libwww Copyright Notice  
libwww: W3C's implementation of HTTP can be found at: http://www.w3.org/Library/  
Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology , Institut National de 
Recherche en Informatique et en Automatique, Keio University). All Rights Reserved. This program is distributed 
under the W3C's Software Intellectual Property License. This program is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the imp lied warranty of MERCHANTABILITY or FITNESS FOR 
A PARTICULAR PURPOSE. See W3C License http://www.w3.org/Consortium/Legal/ for more details.  

Copyright © 1995 CERN. "This product includes computer software created and made available by CERN. This 
acknowledgment shall be mentioned in full in any product which includes the CERN computer software included 
herein or parts thereof."  

12.2 W3C® SOFTWARE NOTICE AND LICENSE 
Copyright © 1994-2001 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut 
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved. 
http://www.w3.org/Consortium/Legal/ 

This W3C work (including software, documents, or other related items) is being provided by the copyright 
holders under the following license. By obtaining, using and/or copying this work, you (the licensee) agree 
that you have read, understood, and will comply with the following terms and conditions: 
Permission to use, copy, modify, and distribute this software and its documentation, with or without 
modification,  for any purpose and without fee or royalty is hereby granted, provided that you include the 
following on ALL copies of the software and documentation or portions thereof, including modifications, that 
you make: 

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.  
2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, a 

short notice of the following form (hypertext is preferred, text is permitted) should be used within the 
body of any redistributed or derivative code: "Copyright © [$date-of-software] World Wide Web 
Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en Informatique 
et en Automatique, Keio University). All Rights Reserved. http://www.w3.org/Consortium/Legal/"  

3. Notice of any changes or modifications to the W3C files, including the date changes were made. 
(We recommend you provide URIs to the location from which the code is derived.)  

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE 
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED 
TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT 
THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY 
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. 
COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR 
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION. 
The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the 
software without specific, written prior permission. Title to copyright in this software and any associated 
documentation will at all times remain with copyright holders. 

12.3 MPG123 License 
Copyright (c) 1995-99 by Michael Hipp, all rights reserved. Parts of the software are contributed by other people, 
please refer to the README file for details! 
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DISTRIBUTION: This software may be distributed freely, provided that it is distributed in its entirety, without 
modifications, and with the original copyright notice and license included. You may distribute your own seperate 
patches together with this software package or a modified package if you always include a pointer  where to get the 
original unmodified package. In this case you must inform the author about the modfied package. The software may not 
be sold for profit or as "hidden" part of  another software, but it may be included with collections  of other free 
software, such as CD-ROM images of FTP servers and  similar, provided that this software is not a significant part  of 
that collection.  Precompiled binaries of this software may be distributed in the same way, provided that this copyright 
notice and license is included without modification. 

USAGE: This software may be used freely, provided that the original author is always credited.  If you intend to use 
this software as a significant part of business (for-profit) activities, you have to contact the author first.  Also, any usage 
that is not covered by this license requires the explicit permission of the author. 

DISCLAIMER: This software is provided as-is.  The author can not be held liable for any damage that might arise from 
the use of this software.  Use it at your own risk.  


